1. bookVolume 62 (2018): Issue 4 (December 2018)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
access type Open Access

Exopolysaccharides May Increase Gastrointestinal Stress Tolerance of Lactobacillus reuteri

Published Online: 31 Dec 2018
Volume & Issue: Volume 62 (2018) - Issue 4 (December 2018)
Page range: 24 - 32
Received: 14 Nov 2018
Accepted: 04 Dec 2018
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

This study investigated a possible relationship between exopolysaccharides (EPS) production and the resistance to bile salts and low pH in intestinal strains of Lactobacillus reuteri. The strains displayed a mucoid phenotype, when grown in the presence of 10 % sucrose. Scanning electron microscopy (SEM) revealed strands of exopolysaccharide linking neighbouring cells. The strains (except L. reuteri B1/1) produced EPS in the range from 15.80 to 650.70 mg.l−1. The strains were tested for tolerance to bile salts (0.15; 0.3 %) and low pH (1.5—2.0—2.5—3.0). The survival rate, after the treatment with artificial gastric and intestinal juices, was determined by flow cytometric analysis. The strains of L. reuteri that produced 121—650 mg.l−1 of EPS showed a significantly higher tolerance (P < 0.001) to the gastric juice at pH 3 and 2.5, throughout the entire exposure time, in comparison to the strains that produced less than 20 mg.l−1 of EPS. L. reuteri L26, with the highest production of EPS, exhibited the highest survival rate (60 %) at pH 2 after the 120 minutes of in-cubation and was able to tolerate pH 1.5 for 30 minutes. Higher production of EPS significantly (P < 0.001) increased the strains’ tolerance against the intestinal juice in the presence of 0.15 and 0.3 % bile salts and was time dependent. L. reuteri L26 showed the highest tolerance (P < 0.001) against 0.3 % bile salts. This investigation revealed a positive correlation between the EPS production and the resistance of intestinal L. reuteri to the stress conditions of the gastrointestinal tract (GIT).


1. Alp, G., Aslim, B., 2010: Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe, 16, 101—105.10.1016/j.anaerobe.2009.06.006Search in Google Scholar

2. Amund, O. D., Ouoba, L. I. I., Sutherland, J. P., Ghoddusi, H. B., 2014: Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis spp. lactis. Benef. Microbes, 5, 461—469.10.3920/BM2013.0099Search in Google Scholar

3. Amund, O. D., 2016: Exploring the relationship between exposure to technological and gastrointestinal stress and pro-biotic functional properties of lactobacilli and bifidobacteria. Can. J. Microbiol., 62, 715—725.10.1139/cjm-2016-0186Search in Google Scholar

4. Azcarate-Peril, M. A., McAuliffe, O., Altermann, E., Lick, S., Russell, W. M., Klaenhammer, T. R., 2005: Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol., 71, 5794—5804.10.1128/AEM.71.10.5794-5804.2005Search in Google Scholar

5. Badel, S., Bernardi, T., Michaud, P., 2011: New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv., 29, 54—66.10.1016/j.biotechadv.2010.08.011Search in Google Scholar

6. Ben Amor, K., Breeuwer, P., Verbaarschot, P., Rombouts, F. M., Akkermans, A. D. L., De Vos, W. M., Abee, T., 2002: Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl. Environ. Microbiol., 68, 5209—5216.10.1128/AEM.68.11.5209-5216.2002Search in Google Scholar

7. Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174.10.1159/000342079Search in Google Scholar

8. Bernal, P., Llamas, M. A., 2012: Promising biotechnological applications of antibiofilm exopolysaccharides. Microbiol. Biotechnol., 5, 670—673.10.1111/j.1751-7915.2012.00359.xSearch in Google Scholar

9. Boke, H., Aslim, B., Alp, G., 2010: The role of resistance to bile salts and acid tolerance of exopolysaccharides produced by yogurt starter bacteria. Arch. Bio. Sci. Belgrade, 62, 323—328.10.2298/ABS1002323BSearch in Google Scholar

10. Bradford, M. M., 1976: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248—254.10.1016/0003-2697(76)90527-3Search in Google Scholar

11. Chapot-Chartier, M. P., Monnet, V., De Vuyst, L., 2011: Cell walls and exopolysaccharides of lactic acid bacteria. In Lede-boer, A., Hugenholtz, J., Kok, J., Konings, W., Wouters, J. (Eds.): The 10th LAB Symposium. Thirty Years Research on Lactic Acid Bacteria. Media Labs, Rotterdam, 37—59.Search in Google Scholar

12. Chen, Y., Woodward, A., Zijlstra, R. T., Gänzle, M. G., 2014: Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol., 80, 5752—5760.10.1128/AEM.01782-14Search in Google Scholar

13. De Vuyst, L., Degeest, B., 1999: Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev., 23, 153—177.10.1016/S0168-6445(98)00042-4Search in Google Scholar

14. Dertli, E., Mayer, M. J., Narbad, A., 2015: Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol., 15, 8.10.1186/s12866-015-0347-2432636425648083Search in Google Scholar

15. Donoghue, H. D., Newman, H. N., 1976: Effect of glucose and sucrose on survival in batch culture of Streptococcus mutans C67-1 and a noncariogenic mutant, C67-25. Infect. Immun., 13, 16—21.10.1128/iai.13.1.16-21.19764205702556Search in Google Scholar

16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., 1956: Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350—356.10.1021/ac60111a017Search in Google Scholar

17. Durlu-Ozkaya, F., Aslimb, B., Ozkaya, M. T., 2007: Effect of exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii subsp. bulgaricus strains to bacteriophage and nisin sensitivity of the bacteria. LWT-Food Science and Technology, 40, 564—568.10.1016/j.lwt.2005.09.009Search in Google Scholar

18. Gänzle, M., Schwab, C., 2009: Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilization, stress tolerance, and biofilm formation. In Ullrich, M. (Ed.):Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, Norfolk, 263—278.Search in Google Scholar

19. Giraffa, G., Chanishvili, N., Widyastuti, Y., 2010: Importance of lactobacilli in food and feed biotechnology. Res. Microbiol., 161, 480—487.10.1016/j.resmic.2010.03.00120302928Search in Google Scholar

20. Jones, S. E., Versalovic, J., 2009: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol., 9, 35—43.10.1186/1471-2180-9-35265350919210794Search in Google Scholar

21. Kim, Y., Sejong, O. H., Kim, S. H., 2009: Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem. Biophys. Res. Commun., 379, 324—329.10.1016/j.bbrc.2008.12.05319103165Search in Google Scholar

22. Kimmel, S. A., Roberts, R. F., Ziegler, G. R., 1998: Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microbiol., 64, 659—664.10.1128/AEM.64.2.659-664.19981060989464404Search in Google Scholar

23. Kos, B., Šušković, J., Goreta, J., Matošić, S., 2000: Effect of protectors on the viability of Lactobacillus acidophilus M92 in simulated gastrointestinal conditions. Food Technol. Biotech., 38, 121—127.Search in Google Scholar

24. Kšonžeková, P., Bystrický, P., Vlčková, S., Pätoprstý, V., Pulzová, L, Mudroňová, D., et al., 2016: Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr. Polym., 141, 10—19.10.1016/j.carbpol.2015.12.037Search in Google Scholar

25. Kubota, H., Senda, S., Nomura, N., Tokuda, H., Uchiyama, H., 2008: Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng., 106, 381—386.10.1263/jbb.106.381Search in Google Scholar

26. Lambert, J. M., Bongers, R. S., de Vos, W. M., Kleerebezem, M., 2008: Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol., 74, 4719—4726.10.1128/AEM.00137-08Search in Google Scholar

27. London, L. E. E., Price, N. P. J., Ryan, P., Wang, L., Auty, M. A. E., Fitzgerald, G. F., et al., 2014: Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J. Appl. Microbiol., 117, 509—517.10.1111/jam.12542Search in Google Scholar

28. Mills, S., Stanton, C., Fitzgerald, G. F., Ross, R. P., 2011: Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Fact, 10 (Suppl. 1), 19.10.1186/1475-2859-10-S1-S19Search in Google Scholar

29. Mortazavian, M., Mohammadi, R., Sohrabvandi, S., 2012: Delivery of probiotic microorganisms into gastrointestinal tract by food products. In Brzozowski, T. (Ed.):New Advances in the Basic and Clinical Gastroenterology. InTech, Rijeka, 121—146.Search in Google Scholar

30. Mudroňová, D., 2015: Flow cytometry as an auxiliary tool for the selection of probiotic bacteria. Benef. Microbes, 6, 727—734.10.3920/BM2014.0145Search in Google Scholar

31. Nwodo, U. U., Green, E., Okoh, A. I., 2012: Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci., 13, 14002—14015.10.3390/ijms131114002Search in Google Scholar

32. Oh, N. S., Joung, J. Y., Lee, J. Y., Kim, Y., 2018: Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant faeces. PLoS ONE, 13, e0192021.10.1371/journal.pone.0192021Search in Google Scholar

33. Qurashi, A. W., Sabri, A. N., 2012: Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol., 43, 1183—1191.10.1590/S1517-83822012000300046Search in Google Scholar

34. Ruas-Madiedo, P., Hugenholtz, J., Zoon, P., 2002: An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J., 12, 163—171.10.1016/S0958-6946(01)00160-1Search in Google Scholar

35. Ruas-Madiedo, P, de los Reyes-Gavilan, C. G., 2005: Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci., 88, 843—856.10.3168/jds.S0022-0302(05)72750-8Search in Google Scholar

36. Ruas-Madiedo, P., Gueimonde, M., Arigoni, F., de los Reyes-Gavilan, C. G., Margolles, A., 2009: Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl. Environ. Microbiol., 75, 1204—1207.10.1128/AEM.00908-08264358619088310Search in Google Scholar

37. Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilan, C. G., Margolles, A., Sanchez, B., 2011: How do bifidobacteria counteract environmental challenges ? Mechanisms involved and physiological consequences. Genes Nutr., 6, 307—318.10.1007/s12263-010-0207-5314506221484166Search in Google Scholar

38. Ryznerová, D., 2013:The Study of the Properties of the Probiotic Bacteria in Terms of their Biological Effects and Applications. Dissertation thesis, University of Veterinary Medicine and Pharmacy in Košice, SR, 146 pp.Search in Google Scholar

39. Sanchez, B., Ruiz, L., van Sinderen, D., Margolles, A., Zomer, A. L., 2010: Acid and bile resistance and stress response in bifidobacteria. In Mayo, B., van Sinderen, D. (Eds.):Bifidobacteria: Genomics and Molecular Aspects. Caister Academic Press, Norfolk, UK, 71—96.Search in Google Scholar

40. Sims, I. M., Frese, S. A., Walter, J., Loach, D., Wilson, M., Appleyard, K., et al., 2011: Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J., 5, 1115—1124.10.1038/ismej.2010.201314627921248858Search in Google Scholar

41. Stack, H. M., Kearney, N., Stanton, C., Fitzgerald, G. F., Ross, R. P., 2010: Association of beta-glucan endogenous production with increased stress tolerance of intestinal Lacto-bacilli. Appl. Environ. Microbiol., 76, 500—507.10.1128/AEM.01524-09280520719933353Search in Google Scholar

42. Sugimoto, S., Abdullah, Al. M., Sonomoto, K., 2008: Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J. Biosci. Bioeng., 106, 324—336.10.1263/jbb.106.32419000607Search in Google Scholar

43. Tieking, M., Kaditzky, S., Valcheva, R., Korakli, M., Vogel, R. F., Ganzle, M. G., 2005: Extracellular homopolysaccha-rides and oligosaccharides from intestinal lactobacilli. J. Appl. Microbiol., 99, 692—702.10.1111/j.1365-2672.2005.02638.x16108811Search in Google Scholar

44. Van Geel-Schutten, G. H., Flesch, F., ten Brink, B., Smith, M. R., Dijkhuizen, L., 1998: Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl. Microbiol. Biotechnol., 50, 697—703.10.1007/s002530051353Search in Google Scholar

45. Wall, T., Bath, K. Britton, R. A., Jonsson, H., Versalovic, J., Roos, S., 2007: The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol., 73, 3924—3935.10.1128/AEM.01502-06193272017449683Search in Google Scholar

46. Walter, J., Schwab, C., Loach, D. M., Ganzle, M. G., Tannock, G. W., 2008: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology, 154, 72—80.10.1099/mic.0.2007/010637-018174127Search in Google Scholar

47. Zannini, E., Waters, D. M., Coffey, A., Arendt, E. K., 2016: Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl. Microbiol. Biotechnol., 100, 1121—1135.10.1007/s00253-015-7172-226621802Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo