1. bookVolume 62 (2018): Issue 2 (June 2018)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Spinal Cord Injuries in Dogs Part I: A Review of Basic Knowledge

Published Online: 17 Jul 2018
Volume & Issue: Volume 62 (2018) - Issue 2 (June 2018)
Page range: 35 - 44
Received: 14 Feb 2018
Accepted: 12 Apr 2018
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

Spinal cord injuries (SCI) in dogs are not frequent, but they are serious pathological conditions accompanied with high morbidity and mortality. The pathophysiology of SCI involves a primary insult, disrupting axons, blood vessels, and cell membranes by mechanical force, or causes tissue necrosis by ischemia and reperfusion. The primary injury is followed by a cascade of secondary events, involving vascular dysfunction, edema formation, continuing ischemia, excitotoxicity, electrolyte shifts, free radical production, inflammation, and delayed apoptotic cell death. The most frequent cause of SCI in dogs is an acute intervertebral disc extrusion, exogenous trauma or ischemia. Neurological symptomatology depends on the location, size and the type of spinal cord lesions. It is characterized by transient or permanent, incomplete or complete loss of motor, sensory, autonomic, and reflex functions caudal to the site of the lesion. In a case of partial spinal cord (SC) damage, one of the typical syndromes develops (e. g. Brown-Séquard syndrome, central SC syndrome, ventral SC syndrome, dorsal SC syndrome, conus medullaris syndrome, or traumatic cauda equina syndrome). The severe transversal spinal cord lesion in the cervical region causes paresis or plegia of all four extremities (tetraparesis, tetraplegia); in thoracic or lumbosacral region, paresis or plegia of the pelvic extremities (paraparesis, paraplegia), i. e. sensory-motor deficit, urinary and foecal incontinence and sexual incompetence. The central nervous system in mammals does not regenerate, so the neurological deficit in dogs following severe SCI persists for the rest of their lives and animals display an image of permanent suffering. The research strategy presented here involved a PubMed, Medline (Ovid) and ISI Web of Science literature search from Januray 2001 to December 2017 using the term “canine spinal cord injury” in the English language; also references from selected papers were scanned and relevant articles included.

Keywords

1. Aciduman, A., Belen, D., Simsek, S., 2006: Management of spinal disorders and trauma in Avicenna’s Canon of medicine. Neurosurgery, 59, 397—403.10.1227/01.NEU.0000222659.46977.2916883181Search in Google Scholar

2. Adams, F., 1886:The Genuine Works of Hippocrates Translated from the Greek with a Preliminary Discourse and Annotations. Vol. 2, William Wood and Co, New York, 411 pp.Search in Google Scholar

3. Adams, M. M., Hicks, A. L., 2005: Spasticity after spinal cord injury. Spinal Cord, 43, 577—586.10.1038/sj.sc.310175715838527Search in Google Scholar

4. Akhtar, A. Z., Pippin, J. J., Sandusky, C. B., 2008: Animal models in spinal cord injury: a review. Rev. Neurosci., 19, 47—60.10.1515/REVNEURO.2008.19.1.47Search in Google Scholar

5. Anderson, K. M., Welsh, C. J., Young, C., Levine, G. J., Kerwin, S. C., Boudreau, C. E., 2015: Acute phase proteins in cerebrospinal fluid from dogs with naturally-occurring spinal cord injury. J. Neurotrauma, 32, 1658—1665.10.1089/neu.2015.3895463819726186466Search in Google Scholar

6. Anwar, M. A., Al Shehabi, T. S., Eid, A. I., 2016: Inflammogenesis of secondary spinal cord injury. Front. Cell. Neurosci., 10, 98. doi: 10.3389/fncel.2016.00098.10.3389/fncel.2016.00098482959327147970Search in Google Scholar

7. Borrie, S. C., Baeumer, B. E., Badtlow, C. E., 2012: The nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res., 349, 105—117.10.1007/s00441-012-1332-922311207Search in Google Scholar

8. Breasted, J. H., 1980: The Edwin Smith Surgical Papyrus, Volume 1: Hieroglyphic Transliteration, and commentary. Univ. Chicago press, Chicago, 596 pp.Search in Google Scholar

9. Brisson, B. A., 2010: Intervertebral disc disease in dogs. Vet. Clin. North Am. Small Anim. Pract., 40, 829—858.10.1016/j.cvsm.2010.06.00120732594Search in Google Scholar

10. Bruce, C. W., Brisson, B. A., Gyselinck, K., 2008: Spinal fracture and luxation in dogs and cats: a retrospective evaluation of 95 cases. Vet. Comp. Orthop. Traumatol., 21, 280—284.10.1055/s-0037-1618862Search in Google Scholar

11. Cauzimille, L., Kornegay, J. N., 1996: Fibrocartilaginous embolism of the spinal cord in dogs: Review of 36 histologically confirmed cases and retrospective study of 26 suspected cases. J. Vet. Intern. Med., 10, 241—245.10.1111/j.1939-1676.1996.tb02056.x8819049Search in Google Scholar

12. David, S., Kroner, A., 2011: Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci., 12, 388—399.10.1038/nrn305321673720Search in Google Scholar

13. Devaux, S., Cizkova, D., Quamico, J., Franck, J., Nataf, S., Pays, L., et al., 2016: Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Moll. Cell. Proteomics, 15, 2641—2670.10.1074/mcp.M115.057794497434227250205Search in Google Scholar

14. Dewey, C. W., 2008:A Practical Guide to Canine and Feline Neurology. 2nd edn., Iowa State University Press, Ames, Iowa, USA, 706 pp.Search in Google Scholar

15. Ditunno, J. F., Little, J. W., Tessler, A., Burns, A. S., 2004: Spinal shock revisited: a four-phase model. Spinal Cord, 42, 383—395.10.1038/sj.sc.310160315037862Search in Google Scholar

16. Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., et al., 2001: Acute spinal cord injury, Part. I: Pathophysiologic mechanisms. Clin. Neuropharm., 24, 254—264.10.1097/00002826-200109000-0000211586110Search in Google Scholar

17. Filbin, M. T., 2003: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 4, 703—713.10.1038/nrn119512951563Search in Google Scholar

18. Fleming, J. C., Noremberg, M. D., Ramsay, D. A., Dekalan, G. A., Marcillo, A. E., Saenz, A. D., et al., 2006: The cellular inflammatory response in human spinal cords after injury. Brain, 169, 3249—3269.10.1093/brain/awl29617071951Search in Google Scholar

19. Fletcher, T. F., Kitchell, R. L., 1966: Anatomical studies on the spinal cord segments of the dog. Am. J. Vet. Res., 27, 1759—1767.Search in Google Scholar

20. Fletcher, T. F., 2013: Spinal cord and meninges. In Evans, H. P., de Lahunta, A., (Eds.):Miller’s Anatomy of the Dog. 4th edn., Elsevier, Saunders, St. Louis, USA, 589—610.Search in Google Scholar

21. Gandini, G., Cizinauskas, S., Lang, J., Fatzer, R., Jaggy, A., 2003: Fibrocartilaginous embolism in 75 dogs: clinical findings and factors influencing the recovery rate. J. Small Anim. Pract., 44, 76—80.10.1111/j.1748-5827.2003.tb00124.x12622472Search in Google Scholar

22. Hansen, H. J., 1951: A pathologic-anatomical interpretation of disc degeneration in dogs. Acta Orthop. Scand., 20, 280—293.10.3109/1745367510899117514894198Search in Google Scholar

23. Henke, D., Vandevelde, M., Doher, M. G., Stockli, M., Forterre, F., 2013: Correlations between severity of clinical signs and histopathological changes in 60 dogs with spinal cord injury associated with acute thoracolumbar intervertebral disc disease. Vet. J., 198, 70—75.10.1016/j.tvjl.2013.04.00323702280Search in Google Scholar

24. Jeffery, N. D., Hamilton, L., Granger, N., 2011: Designing clinical trials in canine spinal cord injury as a model to translate successful laboratory interventions into clinical practice. Vet. Rec., 168, 102—107.10.1136/vr.d47521493470Search in Google Scholar

25. Jeong, S. Y., Seol, D. W., Li, F. C., Chen, Q. X., 2008: The role of mitochondria in apoptosis. BMB Reports, 41, 11—22.10.5483/BMBRep.2008.41.1.01118304445Search in Google Scholar

26. Kato, S., Kawakaza, N., Tomita, K., Murakami, H., Demura, S., Fujimaki, Y., 2008: Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiwicz. Spine, 33, 1533—1541.10.1097/BRS.0b013e318178e5af18520634Search in Google Scholar

27. Kruger, E. A., Pires, M., Ngann, Y., Sterling, M., Rubay, S., 2013: Comprehensive management of pressure ulcers in spinal cord injury. Biomaterials, 30, 2582—2590.Search in Google Scholar

28. Lacroix, S., Chang, L., Rose-John, S., Tuszynski, M. H., 2002: Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J. Comp. Neurol., 454, 213—228.10.1002/cne.1040712442313Search in Google Scholar

29. Lee, J. Y., Choi, S. Y., Oh, T. H., Yune, T. Y., 2012: 17β-estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting Rhoa-JNK3 activation after spinal cord injury. Endocrinology, 153, 3815—3827.10.1210/en.2012-106822700771Search in Google Scholar

30. Levine, G. J., Levine, J. M., Budke, C. M., Kerwin, S. C., Au, J., Vinayak, A., et al., 2009: Description and repeatability of a newly developed spinal cord injury scale for dogs. Prev. Vet. Med., 89, 121—127.10.1016/j.prevetmed.2009.02.01619303151Search in Google Scholar

31. Mack, E. H., 2013: Neurogenic shock. Open Ped. Med. J., 7 (Suppl. 1: M4), 16—18.10.2174/1874309901307010016Search in Google Scholar

32. Marketos, S. G., Skiadas, P. K., 1999: Galen. A pioneer of spine research. Spine, 24, 2358—2362.10.1097/00007632-199911150-0001210586461Search in Google Scholar

33. McKee, W. M., Downes, C. J., Pink, J. J., Gemmill, T. J., 2010: Presumptive exercise-associated peracute thoracolumbar disc extrusion in 48 dogs. Vet. Rec., 166, 523—528.10.1136/vr.b482320418513Search in Google Scholar

34. McKinley, W., Santos, K., Meade, M., Brooke, K., 2007: Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med., 30, 215—224.10.1080/10790268.2007.11753929203195217684887Search in Google Scholar

35. Nakamoto, Y., Ozawa, T., Katanabe, K., Nishiya, K., Yasuda, N., Mashita, T., et al., 2009: Fibrocartilaginous embolism of the spinal cord diagnosed by characteristic clinical findings and magnetic resonance imaging in 26 dogs. J. Vet. Med. Sci., 71, 171—176.10.1292/jvms.71.17119262027Search in Google Scholar

36. Navarro, R., Juhas, S., Keshavarzi, S., Juhasova, J., Motlik, J., Johe, K., et al., 2012: Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J. Neurotrauma, 29, 499—513.10.1089/neu.2011.2076327882322029501Search in Google Scholar

37. Noble, L. J., Donovan, F., Igarashi, T., Goussev, S., Werb, Z., 2002: Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J. Neurosci., 22, 7526—7535.10.1523/JNEUROSCI.22-17-07526.2002Search in Google Scholar

38. Okon, E. B., Streijger, F., Lee, J. H., Anderson, L. M., Russel, A. K., Kwon, B. K., 2013: Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive spinal cord injury. J. Neurotrauma, 30, 1564—1576.10.1089/neu.2013.295623768189Search in Google Scholar

39. Olby, N., 2010: The pathogenesis and treatment of acute spinal cord injuries in dogs. Vet. Clin. N. Am. Small Anim. Pract., 40, 791—807.10.1016/j.cvsm.2010.05.00720732592Search in Google Scholar

40. Orr, M. B., Gensel, J. C., 2017: Interactions of primary insult biomechanics and secondary cascades in spinal cord injury: implications for therapy. Neural Regen. Res., 12, 1618—1619.10.4103/1673-5374.217332569684029171424Search in Google Scholar

41. Oyinbo, C. A., 2011: Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol. Exp., 71, 281—299.Search in Google Scholar

42. Quin, W., Bauman, W. A., Cardozo, C., 2010: Bone and muscle loss after spinal cord injury: organ interactions. Ann. N. Y. Acad. Sci., 1211, 66—84.10.1111/j.1749-6632.2010.05806.x21062296Search in Google Scholar

43. Risio, L. D., Platt, S. R., 2010: Fibrocartilaginous embolic myelopathy in small animals. Vet. Clin. North Am. Small Anim. Pract., 40, 859—869.10.1016/j.cvsm.2010.05.00320732595Search in Google Scholar

44. Rowland, J. W., Hawryluk, G. W. J., Kwon, B., Fehlings, M. G., 2008: Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg. Focus, 25, E2. doi:10.317/FOC.2008.25.11.E2.10.3171/FOC.2008.25.11.E218980476Search in Google Scholar

45. Sherrington, C. S., 1947:Action of the Nervous System. 2nd edn., Cambridge University Press, Cambridge, UK, 241—250.Search in Google Scholar

46. Silva, N. A., Sousa, N., Reis, R. L., Salgado, A. J., 2014: From basics to clinical: a comprehensive review on spinal cord injury. Progr. Neurobiol., 114, 25—57.10.1016/j.pneurobio.2013.11.00224269804Search in Google Scholar

47. Smith, P. M., Jeffery, N. D., 2005: Spinal shock — comparative aspects and clinical relevance. J. Vet. Intern. Med., 19, 788—793.10.1111/j.1939-1676.2005.tb02766.xSearch in Google Scholar

48. Srugo, I., Aroch, I., Christopher, M. M., Chai, O., Goralnik, I., Bdolah-Abram, I., et al., 2011: Signs and outcome in acute nonambulatory thoracolumbar disc disease in dogs. J. Vet. Intern., Med., 25, 846—855.10.1111/j.1939-1676.2011.0739.x21689153Search in Google Scholar

49. Staffeldt, K., 1963: Zur Morphogenese der pathologisch-anatomischen Befunde bei der “Commotio medullae spinalis”. Arch. Psych. Nervenkrankheiten, 204, 328—341.10.1007/BF00341604Search in Google Scholar

50. Stiffer, K. S., Stevenson, M. A., Sanchez, S., Barsanti, J. A., Hofmeister, E., Budsberg, S. C., 2006: Prevalence and characterization of urinary tract infections in dogs with surgically treated type I thoracolumbar intervertebral disc extrusion. Vet. Surg., 35, 330—336.10.1111/j.1532-950X.2006.00153.xSearch in Google Scholar

51. Sullivan, P. G., Krishnamurthy, S., Patel, S. P., Pandya, J. D., Rabchevsky, A. G., 2007: Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J. Neurotrauma, 24, 991—999.10.1089/neu.2006.0242Search in Google Scholar

52. Šulla, I., Balik, V., Petrovičová, J., Almášiová, V., Holovská, K., Oroszová, Z., 2016: A rat spinal cord injury experimental model. Folia Veterinaria, 60, 41—46.10.1515/fv-2016-0017Search in Google Scholar

53. Taylor, A. R., Welsh, C. J., Young, C., Spoor, E., Kerwin, S. C., Griffin, J. F., et al., 2014: Cerebrospinal fluid inflammatory cytokines and chemokines in naturally occuring canine spinal cord injury. J. Neurotrauma, 31, 1561—1569.10.1089/neu.2014.3405Search in Google Scholar

54. Tomko, P., Farkaš, D., Čížková, D., Vanický, I., 2017: Longitudinal enlargement of the lesion after spinal cord injury in the rat: a consequence of malignant oedema ? Spinal Cord, 55, 255—263.10.1038/sc.2016.133Search in Google Scholar

55. Waters, R. L., Adkins, R. H., Yakura, J. S., 1991: Definition of complete spinal cord injury. Spinal Cord, 29, 573—581.10.1038/sc.1991.85Search in Google Scholar

56. Webb, A. A., Ngan, S., Fowler, D. J., 2010: Spinal cord injury I: a synopsis of the basic science. Can. Vet. J., 51, 485—492.Search in Google Scholar

57. Wu, K. L. H., Hsu, C., Chan, J. Y. J., 2009: Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis inducing factor and mitochondrial release of cytochrome C after spinal cord injury. J. Neurotrauma, 26, 965—977.10.1089/neu.2008.0692Search in Google Scholar

58. Xu, J., Fan, G., Chen, S., Wu, Y., Xu, M., Hsu, C. Y., 1998: Methylprednisolone inhibition of TNF-KB activation after spinal cord injury in rats. Brain Res. Mol. Brain Res., 59, 135—142.10.1016/S0169-328X(98)00142-9Search in Google Scholar

59. Yang, L., Blumberg, P. C., Jones, N. R., Manavis, J., Sarvestami, G., Ghabriel, M. N., 2004: Early expression and cellular localization of proinflammatory cytokines Interleukin-1β, Interleukin-6, and Tumor necrosis factor-α in human traumatic spinal cord injury. Spine, 29, 966—971.10.1097/00007632-200405010-0000415105666Search in Google Scholar

60. Zaki, F. A., Prata, R. G., 1976: Necrotizing myelopathy secondary to embolization of herniated intervertebral disk material in the dog. J. Am. Vet. Med. Assoc., 169, 222—228.Search in Google Scholar

61. Zhou, X., He, X., Ren, Y., 2014: Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Reg. Res., 9, 1787—1795.10.4103/1673-5374.143423423976825422640Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo