[
Altman, J., Fibich, P., Santruckova, H., Dolezal, J., Stepanek, P., Kopacek, J., Hunova I., Oulehle F., Tumajer J., Cienciala E., 2017. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of The Total Environment, 609: 506–516. https://doi.org/10.1016/j.scitotenv.2017.07.134
]Search in Google Scholar
[
Balducci, L., Deslauriers, A., Rossi, S., Giovannelli, A., 2019. Stem cycle analyses help decipher the nonlinear response of trees to concurrent warming and drought. Annals of Forest Science, 76 (3): 88. https://doi.org/10.1007/s13595-019-0870-7
]Search in Google Scholar
[
Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agricultural and Forest Meteorology, 151 (5): 531–543. https://doi.org/10.1016/j.agrformet.2010.12.008
]Search in Google Scholar
[
Brestic, M., Zivcak, M., Kalaji, H.M., Carpentier, R., Allakhverdiev, S.I., 2012. Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry, 57: 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012
]Search in Google Scholar
[
Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., Kahmen, A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36: 1508–1519. https://doi.org/10.1093/treephys/tpw062
]Search in Google Scholar
[
Brodribb T.J., McAdam, S.A.M., 2013. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162 (3): 1370–1377. https://doi.org/10.1104/pp.113.217877
]Search in Google Scholar
[
Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., 2020. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 108. https://doi.org/10.1016/j.ecolind.2019.105686
]Search in Google Scholar
[
Cabon, A., Peters, R.L., Fonti, P., Martínez‐Vilalta, J., De Cáceres, M., 2020. Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient. New Phytologist, 226 (5): 1325–1340. https://doi.org/10.1111/nph.16456
]Search in Google Scholar
[
Čermák, J., Kucera, J., Bauerle, W.L., Phillips N., Hinckley, T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27 (2): 181–198. https://doi.org/10.1093/treephys/27.2.181
]Search in Google Scholar
[
Ceusters, N., Valcke R., Frans, M., Claes, J.E., Van den Ende, W., Ceusters J., 2019. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.01012
]Search in Google Scholar
[
Chan, T., Hölttä, T., Berninger, F., Mäkinen, H., Nöjd, P., Mencuccini, M., Nikinmaa, E., 2016. Separating water‐ potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell and Environment, 39 (2): 233–244. https://doi.org/10.1111/pce.12541
]Search in Google Scholar
[
Chaves, M.M., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89 (7): 907–916. https://doi.org/10.1093/aob/mcf105
]Search in Google Scholar
[
Christensen, J.H., Christensen, O.B., 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 (S1): 7–30. https://doi.org/10.1007/s10584-006-9210-7
]Search in Google Scholar
[
Ge, Z., Kellomäki, S., Zhou, X., Wang, K., Peltola, H., Väisänen, H., Strandman, H., 2013. Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 6 (1): 51–63. https://doi.org/10.1002/eco.276
]Search in Google Scholar
[
Goldsmith, G.R., Lehmann, M.M., Cernusak, L.A., Arend, M., Siegwolf, R.T.W., 2017. Inferring foliar water up-take using stable isotopes of water. Oecologia, 184 (4): 763–766. https://doi.org/10.1007/s00442-017-3917-1
]Search in Google Scholar
[
Gomes, M.T.G., da Luz, A.C., dos Santos, M.R., do Carmo Pimentel Batitucci, M., Silva, D. M., Falqueto, A.R., 2012. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142: 49–56. https://doi.org/10.1016/j.scienta.2012.04.026
]Search in Google Scholar
[
Herzog, K., Häsler, R., Thum, R., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10 (2): 94–101. https://doi.org/10.1007/BF00192189
]Search in Google Scholar
[
Hesse, B.D., Gebhardt, T., Hafner, B.D., Hikino, K., Reitsam, A., Gigl, M., Dawid, C., Häberle, K.-H., Grams, T.E.E., 2023. Physiological recovery of tree water relations upon drought release—response of mature beech and spruce after five years of recurrent summer drought. Tree Physiology, 43 (4): 522–538. https://doi.org/10.1093/treephys/tpac135
]Search in Google Scholar
[
Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075
]Search in Google Scholar
[
Hsiao, T.C., Bradford, K.J., 1983. Physiological consequences of cellular water deficits. In Taylor, H.M., Jordan, W.R., Sinclair, T.R. (eds). Limitations to efficient water use in crop production. Madison, Wis.: American Society of Agronomy, p. 227–265.
]Search in Google Scholar
[
Irvine, J., Grace J., 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202 (4): 455–461. https://doi.org/10.1007/s004250050149
]Search in Google Scholar
[
Ježík, M., Blaženec, M., Letts, M.G., Ditmarová, Ľ., Sitková, Z., Střelcová, K., 2015. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8 (3): 378–386. https://doi.org/10.1002/eco.1536
]Search in Google Scholar
[
Kannenberg, S.A., Novick, K.A., Alexander, M.R., Maxwell, J.T., Moore, D.J.P., Phillips, R.P., Anderegg, W.R.L., 2019. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Global Change Biology, 25 (9): 2978–2992. https://doi.org/10.1111/gcb.14710
]Search in Google Scholar
[
Klein, T., 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28 (6): 1313–1320. https://doi.org/10.1111/1365-2435.12289
]Search in Google Scholar
[
Klein, T., Rotenberg, E., Cohen‐Hilaleh, E., Raz‐Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S., Yakir, D., 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water‐limited pine forest. Ecohydrology, 7 (2): 409–419. https://doi.org/10.1002/eco.1360
]Search in Google Scholar
[
Knüver, T., Bär, A., Ganthaler, A., Gebhardt, T., Grams, T. E. E., Häberle, K.‐H., Hesse, B.D., Losso, A., Tomedi, I., Mayr, S., Beikircher, B., 2022. Recovery after long‐ term summer drought: hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. Plant Biology, 24 (7): 1240–1253. https://doi.org/10.1111/plb.13444
]Search in Google Scholar
[
Köcher, P., Horna, V., Leuschner, C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32 (8): 1021– 1032. https://doi.org/10.1093/treephys/tps049
]Search in Google Scholar
[
Konôpková, A., Kurjak, D., Kmeť, J., Klumpp, R., Longauer, R., Ditmarová, Ľ., Gömöry, D., 2018. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees, 32 (1): 73–86. https://doi.org/10.1007/s00468-017-1612-9
]Search in Google Scholar
[
Körner, C., 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25: 107–114. https://doi.org/10.1016/j.pbi.2015.05.003
]Search in Google Scholar
[
Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P., Štěpánek, P., Marek, M.V., 2021. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35 (1): 103–119. https://doi.org/10.1007/s00468-020-02022-6
]Search in Google Scholar
[
Lindfors, L., Hölttä, T., Lintunen, A., Porcar-Castell, A., Nikinmaa, E., Juurola, E., 2015. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings. Tree Physiology, 35 (12): 1314–1324. https://doi.org/10.1093/treephys/tpv095
]Search in Google Scholar
[
Lu, P., Biron, P., Granier, A., Cochard, H., 1996. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annales Des Sciences Forestières, 53 (1): 113–121. https://doi.org/10.1051/forest:19960108
]Search in Google Scholar
[
Mäkinen, H., Nöjd, P., Mielikäinen, K., 2001. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees, 15 (3): 177–185. https://doi.org/10.1007/s004680100089
]Search in Google Scholar
[
Medrano, H., 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89 (7): 895– 905. https://doi.org/10.1093/aob/mcf079
]Search in Google Scholar
[
Mencuccini, M., Hölttä, T., Sevanto, S., Nikinmaa, E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem‐generated turgor signal. New Phytologist, 198 (4): 1143–1154. https://doi.org/10.1111/nph.12224
]Search in Google Scholar
[
Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., Gibon, Y., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62 (6): 1715– 1729. https://doi.org/10.1093/jxb/erq438
]Search in Google Scholar
[
Nalevanková, P., Ježík, M., Sitková, Z., Vido, J., Leštianska, A., Střelcová, K., 2018. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology, 11 (6): e1958. https://doi.org/10.1002/eco.1958
]Search in Google Scholar
[
Neuwirth, B., Rabbel, I., Bendix, J., Bogena, H.R., Thies, B., 2021. The European heat wave 2018: the dendroecological response of oak and spruce in Western Germany. Forests, 12 (3): 283. https://doi.org/10.3390/f12030283
]Search in Google Scholar
[
Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00703
]Search in Google Scholar
[
Oberhuber, W., Mennel, J., 2010. Different radial growth responses of co-occurring coniferous forest trees in the Alps to drought. Geophysical Research Abstracts, 12: (EGU2010-695–1).
]Search in Google Scholar
[
Oberhuber, W., Sehrt, M., Kitz, F., 2020. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290: 108026. https://doi.org/10.1016/j.agrformet.2020.108026
]Search in Google Scholar
[
Offenthaler, I., Hietz, P., Richter, H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15 (4): 215– 221. https://doi.org/10.1007/s004680100090
]Search in Google Scholar
[
Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K., 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50 (1): 138–141. https://doi.org/10.1007/s10535-005-0089-3
]Search in Google Scholar
[
Orlowsky, B., Seneviratne, S.I., 2012. Global changes in extreme events: regional and seasonal dimension. Climate Change, 110 (3–4): 669–696. https://doi.org/10.1007/s10584-011-0122-9
]Search in Google Scholar
[
Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J.W., Frank, D.C., Schaub. M., Rathgeber, C.B.K., Cabon, A., Fonti, P., 2021. Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229 (1): 213–229. https://doi.org/10.1111/nph.16872
]Search in Google Scholar
[
Piovesan, G., Biondi, F., 2021. On tree longevity. New Phytologist, 231 (4): 1318–1337. https://doi.org/10.1111/nph.17148
]Search in Google Scholar
[
Rosati, A., Paoletti, A., Lodolini, E.M., Famiani, F., 2024. Cultivar ideotype for intensive olive orchards: plant vigor, biomass partitioning, tree architecture and fruiting characteristics. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1345182
]Search in Google Scholar
[
Rossi, S., Anfodillo, T., Čufar, K., Cuny, H.E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, C.B.K., Saracino, A., Swidrak, I., Treml V., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22 (11): 3804–3813. https://doi.org/10.1111/gcb.13317
]Search in Google Scholar
[
Rötzer, T., Biber, P., Moser, A., Schäfer, C., Pretzsch, H., 2017. Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 406: 184–195. https://doi.org/10.1016/j.foreco.2017.09.070
]Search in Google Scholar
[
Salomón, M.J., Watts-Williams, S.J., McLaughlin, M.J., Bücking, H., Singh, B.K., Hutter, I., Schneider, C., Martin, F.M., Vosatka, M., Guo, L., Ezawa, T., Saito, M., Declerck, S., Zhu, Y.-G., Bowles T., Abbott L.K., Smith, F.A., Cavagnaro, T.R., van der Heijden, M.G.A., 2022. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. Iscience, 25 (7): 104636. https://doi.org/10.1016/j.isci.2022.104636
]Search in Google Scholar
[
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammiig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45: 86–103. https://doi.org/10.1016/j.baae.2020.04.003
]Search in Google Scholar
[
Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P., Kulakowski, D., Labusova, J., Mikoláš, M., Nagel, T.A., Seidl, R., Synek, M., Svobodová, K., Chaskovskyy, O., Teodosiu, M., Svoboda, M., 2018. Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24 (5): 2169–2181. https://doi.org/10.1111/gcb.14041
]Search in Google Scholar
[
Simard, S.W., 2018. Mycorrhizal networks facilitate tree communication, learning, and memory. In Baluska, F., Gagliano, M., Witzany, G. (eds). Memory and learning in plants. Signaling and Communication in Plants. Cham: Springer, p. 191–213. https://doi.org/10.1007/978-3-319-75596-0_10
]Search in Google Scholar
[
Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell and Environment, 32 (7): 882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x
]Search in Google Scholar
[
Steppe, K., De Pauw, D.J.W., Lemeur, R., Vanrolleghem, P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26 (3): 257–273. https://doi.org/10.1093/treephys/26.3.257
]Search in Google Scholar
[
Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20 (6): 335–343. https://doi.org/10.1016/j.tplants.2015.03.015
]Search in Google Scholar
[
Strasser, R.J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll a fluorescence transient. In Papageorgiou, G.C., Govindjee (eds). Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, vol. 19. Dordrecht: Springer, p. 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12
]Search in Google Scholar
[
Tang, A.C., 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany, 89 (7): 861–870. https://doi.org/10.1093/aob/mcf081
]Search in Google Scholar
[
Vanická, H., Holuša, J., Resnerová, K., Ferenčík, J., Potterf, M., Véle, A., Grodzki, W., 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). Forest Ecology and Management, 470–471: 118209. https://doi.org/10.1016/j.foreco.2020.118209
]Search in Google Scholar
[
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., Mei, L., 2018. Effects of drought stress on photosyn-thesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7 (11): bio035279. https://doi.org/10.1242/bio.035279
]Search in Google Scholar
[
Wei, C., Tyree, M.T., Steudle, E., 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology, 121 (4): 1191–1205. https://doi.org/10.1104/pp.121.4.1191
]Search in Google Scholar
[
Yordanov, I., Velikova, V., Tsonev, T., 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171–186. https://doi.org/10.1023/A:1007201411474
]Search in Google Scholar
[
Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G. M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Functional Plant Biology, 41 (5): 520. https://doi.org/10.1071/FP13240
]Search in Google Scholar
[
Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211 (3): 839–849. https://doi.org/10.1111/nph.13995
]Search in Google Scholar
[
Zweifel, R., Hasler, R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21 (9): 561–569. https://doi.org/10.1093/treephys/21.9.561
]Search in Google Scholar
[
Zweifel, R., Item, H., Hasler, R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21 (12–13): 869–877. https://doi.org/10.1093/treephys/21.12-13.869
]Search in Google Scholar
[
Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R.L., Walthert, L., Wilhelm, M., Ziemińska, K., Etzold S., 2021. Why trees grow at night. New Phytologist, 231 (6): 2174–2185. https://doi.org/10.1111/nph.17552
]Search in Google Scholar
[
Zweifel, R., Zimmermann, L., Newbery, D.M., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25 (2): 147–156. https://doi.org/10.1093/treephys/25.2.147
]Search in Google Scholar
[
Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57 (6): 1445–1459. https://doi.org/10.1093/jxb/erj125
]Search in Google Scholar