Accesso libero

Relation between drought-exposed photosynthetic apparatus and tree water deficit derived from stem diameter variations in Norway spruce seedlings

, , , , ,  e   
23 lug 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Altman, J., Fibich, P., Santruckova, H., Dolezal, J., Stepanek, P., Kopacek, J., Hunova I., Oulehle F., Tumajer J., Cienciala E., 2017. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of The Total Environment, 609: 506–516. https://doi.org/10.1016/j.scitotenv.2017.07.134 Search in Google Scholar

Balducci, L., Deslauriers, A., Rossi, S., Giovannelli, A., 2019. Stem cycle analyses help decipher the nonlinear response of trees to concurrent warming and drought. Annals of Forest Science, 76 (3): 88. https://doi.org/10.1007/s13595-019-0870-7 Search in Google Scholar

Betsch, P., Bonal, D., Breda, N., Montpied, P., Peiffer, M., Tuzet, A., Granier, A., 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agricultural and Forest Meteorology, 151 (5): 531–543. https://doi.org/10.1016/j.agrformet.2010.12.008 Search in Google Scholar

Brestic, M., Zivcak, M., Kalaji, H.M., Carpentier, R., Allakhverdiev, S.I., 2012. Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiology and Biochemistry, 57: 93–105. https://doi.org/10.1016/j.plaphy.2012.05.012 Search in Google Scholar

Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., Kahmen, A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36: 1508–1519. https://doi.org/10.1093/treephys/tpw062 Search in Google Scholar

Brodribb T.J., McAdam, S.A.M., 2013. Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology, 162 (3): 1370–1377. https://doi.org/10.1104/pp.113.217877 Search in Google Scholar

Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., 2020. Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, 108. https://doi.org/10.1016/j.ecolind.2019.105686 Search in Google Scholar

Cabon, A., Peters, R.L., Fonti, P., Martínez‐Vilalta, J., De Cáceres, M., 2020. Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient. New Phytologist, 226 (5): 1325–1340. https://doi.org/10.1111/nph.16456 Search in Google Scholar

Čermák, J., Kucera, J., Bauerle, W.L., Phillips N., Hinckley, T.M., 2007. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology, 27 (2): 181–198. https://doi.org/10.1093/treephys/27.2.181 Search in Google Scholar

Ceusters, N., Valcke R., Frans, M., Claes, J.E., Van den Ende, W., Ceusters J., 2019. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Frontiers in Plant Science. 10. https://doi.org/10.3389/fpls.2019.01012 Search in Google Scholar

Chan, T., Hölttä, T., Berninger, F., Mäkinen, H., Nöjd, P., Mencuccini, M., Nikinmaa, E., 2016. Separating water‐ potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell and Environment, 39 (2): 233–244. https://doi.org/10.1111/pce.12541 Search in Google Scholar

Chaves, M.M., 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89 (7): 907–916. https://doi.org/10.1093/aob/mcf105 Search in Google Scholar

Christensen, J.H., Christensen, O.B., 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81 (S1): 7–30. https://doi.org/10.1007/s10584-006-9210-7 Search in Google Scholar

Ge, Z., Kellomäki, S., Zhou, X., Wang, K., Peltola, H., Väisänen, H., Strandman, H., 2013. Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology, 6 (1): 51–63. https://doi.org/10.1002/eco.276 Search in Google Scholar

Goldsmith, G.R., Lehmann, M.M., Cernusak, L.A., Arend, M., Siegwolf, R.T.W., 2017. Inferring foliar water up-take using stable isotopes of water. Oecologia, 184 (4): 763–766. https://doi.org/10.1007/s00442-017-3917-1 Search in Google Scholar

Gomes, M.T.G., da Luz, A.C., dos Santos, M.R., do Carmo Pimentel Batitucci, M., Silva, D. M., Falqueto, A.R., 2012. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142: 49–56. https://doi.org/10.1016/j.scienta.2012.04.026 Search in Google Scholar

Herzog, K., Häsler, R., Thum, R., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10 (2): 94–101. https://doi.org/10.1007/BF00192189 Search in Google Scholar

Hesse, B.D., Gebhardt, T., Hafner, B.D., Hikino, K., Reitsam, A., Gigl, M., Dawid, C., Häberle, K.-H., Grams, T.E.E., 2023. Physiological recovery of tree water relations upon drought release—response of mature beech and spruce after five years of recurrent summer drought. Tree Physiology, 43 (4): 522–538. https://doi.org/10.1093/treephys/tpac135 Search in Google Scholar

Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075 Search in Google Scholar

Hsiao, T.C., Bradford, K.J., 1983. Physiological consequences of cellular water deficits. In Taylor, H.M., Jordan, W.R., Sinclair, T.R. (eds). Limitations to efficient water use in crop production. Madison, Wis.: American Society of Agronomy, p. 227–265. Search in Google Scholar

Irvine, J., Grace J., 1997. Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta, 202 (4): 455–461. https://doi.org/10.1007/s004250050149 Search in Google Scholar

Ježík, M., Blaženec, M., Letts, M.G., Ditmarová, Ľ., Sitková, Z., Střelcová, K., 2015. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow. Ecohydrology, 8 (3): 378–386. https://doi.org/10.1002/eco.1536 Search in Google Scholar

Kannenberg, S.A., Novick, K.A., Alexander, M.R., Maxwell, J.T., Moore, D.J.P., Phillips, R.P., Anderegg, W.R.L., 2019. Linking drought legacy effects across scales: from leaves to tree rings to ecosystems. Global Change Biology, 25 (9): 2978–2992. https://doi.org/10.1111/gcb.14710 Search in Google Scholar

Klein, T., 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28 (6): 1313–1320. https://doi.org/10.1111/1365-2435.12289 Search in Google Scholar

Klein, T., Rotenberg, E., Cohen‐Hilaleh, E., Raz‐Yaseef, N., Tatarinov, F., Preisler, Y., Ogée, J., Cohen, S., Yakir, D., 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water‐limited pine forest. Ecohydrology, 7 (2): 409–419. https://doi.org/10.1002/eco.1360 Search in Google Scholar

Knüver, T., Bär, A., Ganthaler, A., Gebhardt, T., Grams, T. E. E., Häberle, K.‐H., Hesse, B.D., Losso, A., Tomedi, I., Mayr, S., Beikircher, B., 2022. Recovery after long‐ term summer drought: hydraulic measurements reveal legacy effects in trunks of Picea abies but not in Fagus sylvatica. Plant Biology, 24 (7): 1240–1253. https://doi.org/10.1111/plb.13444 Search in Google Scholar

Köcher, P., Horna, V., Leuschner, C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32 (8): 1021– 1032. https://doi.org/10.1093/treephys/tps049 Search in Google Scholar

Konôpková, A., Kurjak, D., Kmeť, J., Klumpp, R., Longauer, R., Ditmarová, Ľ., Gömöry, D., 2018. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees, 32 (1): 73–86. https://doi.org/10.1007/s00468-017-1612-9 Search in Google Scholar

Körner, C., 2015. Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25: 107–114. https://doi.org/10.1016/j.pbi.2015.05.003 Search in Google Scholar

Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P., Štěpánek, P., Marek, M.V., 2021. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees, 35 (1): 103–119. https://doi.org/10.1007/s00468-020-02022-6 Search in Google Scholar

Lindfors, L., Hölttä, T., Lintunen, A., Porcar-Castell, A., Nikinmaa, E., Juurola, E., 2015. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings. Tree Physiology, 35 (12): 1314–1324. https://doi.org/10.1093/treephys/tpv095 Search in Google Scholar

Lu, P., Biron, P., Granier, A., Cochard, H., 1996. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation. Annales Des Sciences Forestières, 53 (1): 113–121. https://doi.org/10.1051/forest:19960108 Search in Google Scholar

Mäkinen, H., Nöjd, P., Mielikäinen, K., 2001. Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees, 15 (3): 177–185. https://doi.org/10.1007/s004680100089 Search in Google Scholar

Medrano, H., 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89 (7): 895– 905. https://doi.org/10.1093/aob/mcf079 Search in Google Scholar

Mencuccini, M., Hölttä, T., Sevanto, S., Nikinmaa, E., 2013. Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem‐generated turgor signal. New Phytologist, 198 (4): 1143–1154. https://doi.org/10.1111/nph.12224 Search in Google Scholar

Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., Gibon, Y., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62 (6): 1715– 1729. https://doi.org/10.1093/jxb/erq438 Search in Google Scholar

Nalevanková, P., Ježík, M., Sitková, Z., Vido, J., Leštianska, A., Střelcová, K., 2018. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology, 11 (6): e1958. https://doi.org/10.1002/eco.1958 Search in Google Scholar

Neuwirth, B., Rabbel, I., Bendix, J., Bogena, H.R., Thies, B., 2021. The European heat wave 2018: the dendroecological response of oak and spruce in Western Germany. Forests, 12 (3): 283. https://doi.org/10.3390/f12030283 Search in Google Scholar

Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00703 Search in Google Scholar

Oberhuber, W., Mennel, J., 2010. Different radial growth responses of co-occurring coniferous forest trees in the Alps to drought. Geophysical Research Abstracts, 12: (EGU2010-695–1). Search in Google Scholar

Oberhuber, W., Sehrt, M., Kitz, F., 2020. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290: 108026. https://doi.org/10.1016/j.agrformet.2020.108026 Search in Google Scholar

Offenthaler, I., Hietz, P., Richter, H., 2001. Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. Trees, 15 (4): 215– 221. https://doi.org/10.1007/s004680100090 Search in Google Scholar

Ohashi, Y., Nakayama, N., Saneoka, H., Fujita, K., 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50 (1): 138–141. https://doi.org/10.1007/s10535-005-0089-3 Search in Google Scholar

Orlowsky, B., Seneviratne, S.I., 2012. Global changes in extreme events: regional and seasonal dimension. Climate Change, 110 (3–4): 669–696. https://doi.org/10.1007/s10584-011-0122-9 Search in Google Scholar

Peters, R.L., Steppe, K., Cuny, H.E., De Pauw, D.J.W., Frank, D.C., Schaub. M., Rathgeber, C.B.K., Cabon, A., Fonti, P., 2021. Turgor – a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229 (1): 213–229. https://doi.org/10.1111/nph.16872 Search in Google Scholar

Piovesan, G., Biondi, F., 2021. On tree longevity. New Phytologist, 231 (4): 1318–1337. https://doi.org/10.1111/nph.17148 Search in Google Scholar

Rosati, A., Paoletti, A., Lodolini, E.M., Famiani, F., 2024. Cultivar ideotype for intensive olive orchards: plant vigor, biomass partitioning, tree architecture and fruiting characteristics. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1345182 Search in Google Scholar

Rossi, S., Anfodillo, T., Čufar, K., Cuny, H.E., Deslauriers, A., Fonti, P., Frank, D., Gričar, J., Gruber, A., Huang, J., Jyske, T., Kašpar, J., King, G., Krause, C., Liang, E., Mäkinen, H., Morin, H., Nöjd, P., Oberhuber, W., Prislan, P., Rathgeber, C.B.K., Saracino, A., Swidrak, I., Treml V., 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22 (11): 3804–3813. https://doi.org/10.1111/gcb.13317 Search in Google Scholar

Rötzer, T., Biber, P., Moser, A., Schäfer, C., Pretzsch, H., 2017. Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 406: 184–195. https://doi.org/10.1016/j.foreco.2017.09.070 Search in Google Scholar

Salomón, M.J., Watts-Williams, S.J., McLaughlin, M.J., Bücking, H., Singh, B.K., Hutter, I., Schneider, C., Martin, F.M., Vosatka, M., Guo, L., Ezawa, T., Saito, M., Declerck, S., Zhu, Y.-G., Bowles T., Abbott L.K., Smith, F.A., Cavagnaro, T.R., van der Heijden, M.G.A., 2022. Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. Iscience, 25 (7): 104636. https://doi.org/10.1016/j.isci.2022.104636 Search in Google Scholar

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammiig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45: 86–103. https://doi.org/10.1016/j.baae.2020.04.003 Search in Google Scholar

Schurman, J.S., Trotsiuk, V., Bače, R., Čada, V., Fraver, S., Janda, P., Kulakowski, D., Labusova, J., Mikoláš, M., Nagel, T.A., Seidl, R., Synek, M., Svobodová, K., Chaskovskyy, O., Teodosiu, M., Svoboda, M., 2018. Large‐scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24 (5): 2169–2181. https://doi.org/10.1111/gcb.14041 Search in Google Scholar

Simard, S.W., 2018. Mycorrhizal networks facilitate tree communication, learning, and memory. In Baluska, F., Gagliano, M., Witzany, G. (eds). Memory and learning in plants. Signaling and Communication in Plants. Cham: Springer, p. 191–213. https://doi.org/10.1007/978-3-319-75596-0_10 Search in Google Scholar

Simonin, K.A., Santiago, L.S., Dawson, T.E., 2009. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell and Environment, 32 (7): 882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x Search in Google Scholar

Steppe, K., De Pauw, D.J.W., Lemeur, R., Vanrolleghem, P.A., 2006. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26 (3): 257–273. https://doi.org/10.1093/treephys/26.3.257 Search in Google Scholar

Steppe, K., Sterck, F., Deslauriers, A., 2015. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20 (6): 335–343. https://doi.org/10.1016/j.tplants.2015.03.015 Search in Google Scholar

Strasser, R.J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll a fluorescence transient. In Papageorgiou, G.C., Govindjee (eds). Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration, vol. 19. Dordrecht: Springer, p. 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12 Search in Google Scholar

Tang, A.C., 2002. Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. Annals of Botany, 89 (7): 861–870. https://doi.org/10.1093/aob/mcf081 Search in Google Scholar

Vanická, H., Holuša, J., Resnerová, K., Ferenčík, J., Potterf, M., Véle, A., Grodzki, W., 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). Forest Ecology and Management, 470–471: 118209. https://doi.org/10.1016/j.foreco.2020.118209 Search in Google Scholar

Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., Mei, L., 2018. Effects of drought stress on photosyn-thesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7 (11): bio035279. https://doi.org/10.1242/bio.035279 Search in Google Scholar

Wei, C., Tyree, M.T., Steudle, E., 1999. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the cohesion-tension theory taking hydraulic architecture into consideration. Plant Physiology, 121 (4): 1191–1205. https://doi.org/10.1104/pp.121.4.1191 Search in Google Scholar

Yordanov, I., Velikova, V., Tsonev, T., 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 171–186. https://doi.org/10.1023/A:1007201411474 Search in Google Scholar

Zweifel, R., Drew, D.M., Schweingruber, F., Downes, G. M., 2014. Xylem as the main origin of stem radius changes in Eucalyptus. Functional Plant Biology, 41 (5): 520. https://doi.org/10.1071/FP13240 Search in Google Scholar

Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211 (3): 839–849. https://doi.org/10.1111/nph.13995 Search in Google Scholar

Zweifel, R., Hasler, R., 2001. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Tree Physiology, 21 (9): 561–569. https://doi.org/10.1093/treephys/21.9.561 Search in Google Scholar

Zweifel, R., Item, H., Hasler, R., 2001. Link between diurnal stem radius changes and tree water relations. Tree Physiology, 21 (12–13): 869–877. https://doi.org/10.1093/treephys/21.12-13.869 Search in Google Scholar

Zweifel, R., Sterck, F., Braun, S., Buchmann, N., Eugster, W., Gessler, A., Häni, M., Peters, R.L., Walthert, L., Wilhelm, M., Ziemińska, K., Etzold S., 2021. Why trees grow at night. New Phytologist, 231 (6): 2174–2185. https://doi.org/10.1111/nph.17552 Search in Google Scholar

Zweifel, R., Zimmermann, L., Newbery, D.M., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25 (2): 147–156. https://doi.org/10.1093/treephys/25.2.147 Search in Google Scholar

Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57 (6): 1445–1459. https://doi.org/10.1093/jxb/erj125 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Botanica, Zoologia, Ecologia, Scienze della vita, altro