[
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., Justes, E., 2015. Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243–244: 18–28. https://doi.org/10.1016/j.geoderma.2014.12.00610.1016/j.geoderma.2014.12.006
]Search in Google Scholar
[
Arnaud-Fassetta, G., Astrade, L., Bardou, É., Corbonnois, J., Delahaye, D., Fort, M., Gautier, E., Jacob, N., Peiry, J.-L., Piégay, H., Penven, M.-J., 2009. Fluvial geomorphology and flood-risk management. Géomorphologie : Relief, Processus, Environment, 15: 109–128. https://doi.org/10.4000/geomorphologie.755410.4000/geomorphologie.7554
]Search in Google Scholar
[
Asfaw, A., Zewudie, S., 2021. Soil macrofauna abundance, biomass and selected soil properties in the home garden and coffee-based agroforestry systems at Wondo Genet, Ethiopia. Environmental and Sustainability Indicators, 12: 100153. https://doi.org/10.1016/j.indic.2021.10015310.1016/j.indic.2021.100153
]Search in Google Scholar
[
Ayuke, F.O., 2010. Soil macrofauna functional groups and their effects on soil structure, as related to agricultural management practices across agroecological zones of Sub-Saharan Africa. Thesis. Wageningen, NL: Wageningen University, 202 p.
]Search in Google Scholar
[
Barrios, E., 2007. Soil biota, ecosystem services and land productivity. Ecological Economics, 64: 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.00410.1016/j.ecolecon.2007.03.004
]Search in Google Scholar
[
Belgard, A.L., 1950. Lesnaya rastitel’nost’ yugo-vostoka USSR [Forest vegetation of the south-eastern part of Ukraine]. Kyiv: KGU im. Shevchenko. 263 p.
]Search in Google Scholar
[
Belgard, A.L., 1971. Stepnoe lesovedenie [Steppe forestry]. Moskva: Lesnaya promyshlennost. 336 p.
]Search in Google Scholar
[
Benefer, C.M., Knight, M.E., Ellis, J.S., Hicks, H., Blackshaw, R.P., 2012. Understanding the relationship between adult and larval Agriotes distributions: the effect of sampling method, species identification and abiotic variables. Applied Soil Ecology, 53: 39–48. https://doi.org/10.1016/j.apsoil.2011.11.00410.1016/j.apsoil.2011.11.004
]Search in Google Scholar
[
Benjankar, R., Egger, G., Jorde, K., Goodwin, P., Glenn, N.F., 2011. Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92: 3058–3070. https://doi.org/10.1016/j.jenvman.2011.07.01710.1016/j.jenvman.2011.07.01721852032
]Search in Google Scholar
[
Blanchet, F.G., Legendre, P., Borcard, D., 2008. Forward selection of explanatory variables. Ecology, 89: 2623–2632. https://doi.org/10.1890/07-0986.110.1890/07-0986.118831183
]Search in Google Scholar
[
Bondarev, D., Fedushko, M., Hubanova, N., Novitskiy, R., Kunakh, O., Zhukov, O., 2022. Temporal dynamics of the fish communities in the reservoir: the influence of eutrophication on ecological guilds structure. Ichthyological Research. https://doi.org/10.1007/s10228-021-00854-x10.1007/s10228-021-00854-x
]Search in Google Scholar
[
Botros, F.E., Harter, T., Onsoy, Y.S., Tuli, A., Hopmans, J.W., 2009. Spatial variability of hydraulic properties and sediment characteristics in a deep alluvial unsaturated zone. Vadose Zone Journal, 8: 276–289. https://doi.org/10.2136/vzj2008.008710.2136/vzj2008.0087
]Search in Google Scholar
[
Bouché, M.B., 1977. Stratégies lombriciennes [Earthworm strategies]. In Lohm, U., Persson, T. (eds). Soil organisms as components of ecosystems. Ecology Bulletin. Stockholm, Sweden: Swedish Natural Science Research Council, p. 122–132.
]Search in Google Scholar
[
Bouska, K.L., Houser, J.N., De Jager, N.R., Drake, D.C., Collins, S.F., Gibson-Reinemer, D.K., Thomsen, M.A., 2020. Conceptualizing alternate regimes in a large flood-plain-river ecosystem: water clarity, invasive fish, and floodplain vegetation. Journal of Environmental Management, 264: 110516. https://doi.org/10.1016/j.jenvman.2020.11051610.1016/j.jenvman.2020.11051632250922
]Search in Google Scholar
[
Bullinger-Weber, G., Le Bayon, R.-C., Guenat, C., Gobat, J.-M., 2007. Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils. European Journal of Soil Biology, 43: 57–70. https://doi.org/10.1016/j.ejsobi.2006.05.00310.1016/j.ejsobi.2006.05.003
]Search in Google Scholar
[
Buzuk, G.N., 2017. Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2: 31–37.
]Search in Google Scholar
[
Cáceres, M. De, 2013. How to use the indicspecies package (ver. 1.7.1). R Project. 29 p.
]Search in Google Scholar
[
Capon, S.J., Dowe, J.L., 2007. Diversity and dynamics of riparian vegetation. In Lovett, S., Price, P. (eds). Principles for riparian lands management. Canberra, Australia: Land and Water Australia, p. 174.
]Search in Google Scholar
[
Chapman, A., 2014. The influence of landscape heterogeneity – ground beetles (Coleoptera: Carabidae) in Fthiotida, Central Greece. Biodiversity Data Journal, 2: e1082. https://doi.org/10.3897/BDJ.2.e108210.3897/BDJ.2.e1082403143924891833
]Search in Google Scholar
[
Clements, F.E., 1936. Nature and structure of the climax. The Journal of Ecology, 24: 252. https://doi.org/10.2307/225627810.2307/2256278
]Search in Google Scholar
[
Dexter, A.R., 2004. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120: 201–214. https://doi.org/10.1016/j.geoderma.2003.09.00410.1016/j.geoderma.2003.09.004
]Search in Google Scholar
[
Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.
]Search in Google Scholar
[
Didukh, Y.P., Chusova, O.O., Olshevska, I.A., Polishchuk, Y.V., 2015. River valleys as the object of ecological and geobotanical research. Ukrainian Botanical Journal, 72: 415–430. https://doi.org/10.15407/ukrbotj72.05.41510.15407/ukrbotj72.05.415
]Search in Google Scholar
[
Doering, M., Freimann, R., Antenen, N., Roschi, A., Robinson, C.T., Rezzonico, F., Smits, T.H.M., Tonolla, D., 2021. Microbial communities in floodplain ecosystems in relation to altered flow regimes and experimental flooding. Science of The Total Environment, 788: 147497. https://doi.org/10.1016/j.scitotenv.2021.14749710.1016/j.scitotenv.2021.14749734134395
]Search in Google Scholar
[
Dokuchaev, V. V., 1883. Russian Chernozem. Report to the Imperial Free Economic Society. Tipogr. Declerona i Evdokimova, St. Petersburg.
]Search in Google Scholar
[
Dolin, V.G., 1978. Identification key of larvae of click beetles fauna of the USSR. Kyiv: Urozhay. 124 p.
]Search in Google Scholar
[
Dray, S., Dufour, A.B., 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22: 1–20. https://doi.org/10.18637/jss.v022.i0410.18637/jss.v022.i04
]Search in Google Scholar
[
Dray, S., Legendre, P., Peres-Neto, P.R., 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196: 483–493. https://doi.org/10.1016/j.ecolmodel.2006.02.01510.1016/j.ecolmodel.2006.02.015
]Search in Google Scholar
[
Dubyna, D. V., Dziuba, Т.P., Iemelianova, S.M., Tymoshenko, P.A., 2020. Syntaxonomy and ecological differentiation of the pioneer vegetation of Ukraine. 2. Helichryso-Crucianelletea maritimae, Festucetea vaginatae, Koelerio-Corynephoretea canescentis classes. Biosystems Diversity, 28: 298–319. https://doi.org/10.15421/01203910.15421/012039
]Search in Google Scholar
[
Filser, J., Faber, J.H., Tiunov, A. V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A. V., Berg, M.P., Lavelle, P., Loreau, M., Wall, D.H., Querner, P., Eijsackers, H., Jiménez, J.J., 2016. Soil fauna: key to new carbon models. Soil, 2: 565–582. https://doi.org/10.5194/soil-2-565-201610.5194/soil-2-565-2016
]Search in Google Scholar
[
Florinsky, I. V., 2012. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, 45: 445–451. https://doi.org/10.1134/S106422931204004710.1134/S1064229312040047
]Search in Google Scholar
[
Gebauer, R.L.E., Tenhunen, J.D., Reynolds, J.F., 1996. Soil aeration in relation to soil physical properties, nitrogen availability, and root characteristics within an arctic watershed. Plant and Soil, 178: 37–48. https://doi.org/10.1007/BF0001116110.1007/BF00011161
]Search in Google Scholar
[
Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M., Joschko, M., Timmer, J., 2016. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59 (1): 27–36. https://doi.org/10.1016/j.pedobi.2015.12.00310.1016/j.pedobi.2015.12.003
]Search in Google Scholar
[
Glaeser, J., Wulf, M., 2009. Effects of water regime and habitat continuity on the plant species composition of floodplain forests. Journal of Vegetation Science, 20: 37–48. https://doi.org/10.1111/j.1654-1103.2009.05282.x10.1111/j.1654-1103.2009.05282.x
]Search in Google Scholar
[
Globevnik, L., Januschke, K., Kail, J., Snoj, L., Manfrin, A., Azlak, M., Christiansen, T., Birk, S., 2020. Preliminary assessment of river floodplain condition in Europe. ETC/ICM Technical Report 5/2020. European Topic Centre on Inland, Coastal and Marine waters. 121 p.
]Search in Google Scholar
[
Goncharenko, I., Kozyr, M., Senchylo, O., 2020. Classification of the floodplain meadows of the Seym and the Dnieper river valleys in the north-eastern part of Ukraine. Biologia, 75: 53–70. https://doi.org/10.2478/s11756-019-00361-510.2478/s11756-019-00361-5
]Search in Google Scholar
[
Gorres, J.H., Amador, J.A., 2010. Partitioning of habitable pore space in earthworm burrows. Journal of Nematology, 42: 68–72.
]Search in Google Scholar
[
Greene, R.S.B., Hairsine, P.B., 2004. Elementary processes of soil–water interaction and thresholds in soil surface dynamics: a review. Earth Surface Processes and Landforms, 29: 1077–1091. https://doi.org/10.1002/esp.110310.1002/esp.1103
]Search in Google Scholar
[
Gren, I.-M., Groth, K.-H., Sylvén, M., 1995. Economic values of Danube floodplains. Journal of Environmental Management, 45: 333–345. https://doi.org/10.1006/jema.1995.008010.1006/jema.1995.0080
]Search in Google Scholar
[
Gritsan, Y. I., Kunakh, O.M., Dubinina, J.J., Kotsun, V.I., Tkalich, Y.I., 2019. The catena aspect of the landscape diversity of the “Dnipro-Orilsky” natural reserve. Journal of Geology, Geography and Geoecology, 28: 417–431. https://doi.org/10.15421/11193910.15421/111939
]Search in Google Scholar
[
Gritsan, Y. I., Kunah, O.M., Fedushko, M.P., Babchenko, A. V., Sirovatko, V.O., Zhukov, O. V., Kotsun, V.I., 2019. Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin. Agrology, 2: 161–169. https://doi.org/10.32819/01902410.32819/019024
]Search in Google Scholar
[
Halarewicz, A., Pruchniewicz, D., Kawałko, D., 2021. Using direct and indirect methods to assess changes in riparian habitats. Forests, 12: 504. https://doi.org/10.3390/f1204050410.3390/f12040504
]Search in Google Scholar
[
Hodson, M.E., Benning, L.G., Demarchi, B., Penkman, K.E.H., Rodriguez-Blanco, J.D., Schofield, P.F., Versteegh, E.A.A., 2015. Biomineralisation by earth worms – an investigation into the stability and distribution of amorphous calcium carbonate. Geochemical Transactions, 16: 4. https://doi.org/10.1186/s12932-015-0019-z10.1186/s12932-015-0019-z444173926028991
]Search in Google Scholar
[
Hohensinner, S., Grupe, S., Klasz, G., Payer, T., 2022. Long-term deposition of fine sediments in Vienna’s Danube floodplain before and after channelization. Geomorphology, 398: 108038. https://doi.org/10.1016/j.geomorph.2021.10803810.1016/j.geomorph.2021.108038
]Search in Google Scholar
[
Horn, H.S., 1974. The ecology of secondary succession. Annual Review of Ecology and Systematics, 5: 25–37. https://doi.org/10.1146/annurev.es.05.110174.00032510.1146/annurev.es.05.110174.000325
]Search in Google Scholar
[
Horn, M.A., Schramm, A., Drake, H.L., 2003. The earth-worm gut: an ideal habitat for ingested N2O-producing microorganisms. Applied and Environmental Micro-biology, 69: 1662–1669. https://doi.org/10.1128/AEM.69.3.1662-1669.200310.1128/AEM.69.3.1662-1669.200315007812620857
]Search in Google Scholar
[
Horn, R., Taubner, H., Wuttke, M., Baumgartl, T., 1994. Soil physical properties related to soil structure. Soil and Tillage Research, 30: 187–216. https://doi.org/10.1016/0167-1987(94)90005-110.1016/0167-1987(94)90005-1
]Search in Google Scholar
[
Hu, W., Tabley, F., Beare, M., Tregurtha, C., Gillespie, R., Qiu, W., Gosden, P., 2018. Short-term dynamics of soil physical properties as affected by compaction and cillage in a silt soam soil. Vadose Zone Journal, 17: 180115. https://doi.org/10.2136/vzj2018.06.011510.2136/vzj2018.06.0115
]Search in Google Scholar
[
Illian, J., Burslem, D., 2007. Contributions of spatial point process modelling to biodiversity theory. Journal de la Societe Francaise de Statistique, 148: 9–29.
]Search in Google Scholar
[
Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69: 1338–1350. https://doi.org/10.2136/sssaj2004.015410.2136/sssaj2004.0154
]Search in Google Scholar
[
Jakubowska, M., Bocianowski, J., Nowosad, K., 2018. Seasonal fluctuation of Agriotes lineatus, A. obscurus and A. sputator click beetles caught using pheromone traps in Poland. Plant Protection Science, 54: 118–127. https://doi.org/10.17221/39/2016-PPS10.17221/39/2016-PPS
]Search in Google Scholar
[
Jenny, H., 1941. Factors of soil formation: a system of quantitative pedology. New York: Dover Publications. 281 p.
]Search in Google Scholar
[
Jones, C.G., Gutiérrez, J.L., Groffman, P.M., Shachak, M., 2006. Linking ecosystem engineers to soil processes: a framework using the Jenny State Factor Equation. European Journal of Soil Biology, 42: S39-S53. https://doi.org/10.1016/j.ejsobi.2006.07.01710.1016/j.ejsobi.2006.07.017
]Search in Google Scholar
[
Jozefaciuk, G., 2009. Effect of the size of aggregates on pore characteristics of minerals measured by mercury intrusion and water-vapor desorption techniques. Clays and Clay Minerals, 57: 586–601. https://doi.org/10.1346/CCMN.2009.057050710.1346/CCMN.2009.0570507
]Search in Google Scholar
[
Karpachevsky, L.O., 2005. Ekologicheskoe pochvovedenie [Ecological soil science]. Moskva: GEOS 335 p.
]Search in Google Scholar
[
Kercheva, M., Sokołowska, Z., Hajnos, M., Skic, K., Shishkov, T., 2017. Physical parameters of Fluvisols on flooded and non-flooded terraces. International Agrophysics, 31: 73–82. https://doi.org/10.1515/intag-2016-002610.1515/intag-2016-0026
]Search in Google Scholar
[
Kiedrzyńska, E., Kiedrzyński, M., Zalewski, M., 2015. Sustainable floodplain management for flood prevention and water quality improvement. Natural Hazards, 76: 955–977. https://doi.org/10.1007/s11069-014-1529-110.1007/s11069-014-1529-1
]Search in Google Scholar
[
Kolesnikova, A., Lapteva, E., Degteva, S., Taskaeva, A., Kudrin, A., Vinogradova, Y., Khabibullina, F., 2016. Biodiversity of floodplain soils in the European North-East of Russia. In River basin management. London: InTechOpen, p. 271–294. https://doi.org/10.5772/6371310.5772/63713
]Search in Google Scholar
[
Korobushkin, D.I., Gongalsky, K.B., Gorbunova, A.Y., Palatov, D.M., Shekhovtsov, S. V., Tanasevitch, A. V., Volkova, J.S., Chimidov, S.N., Dedova, E.B., Ladatko, V.A., Sunitskaya, T. V., John, K., Saifutdinov, R.A., Zaitsev, A.S., 2019. Mechanisms of soil macro-fauna community sustainability in temperate rice-growing systems. Scientific Reports, 9: 10197. https://doi.org/10.1038/s41598-019-46733-410.1038/s41598-019-46733-4662964231308442
]Search in Google Scholar
[
Krivolutsky, D.A., 1994. Pochvennaja fauna v ekologicheskom kontrole [Soil fauna in ecological control]. Moskva: Nauka. 240 p
]Search in Google Scholar
[
Kunakh, O.M., Yorkina, N.V., Budakova, V.S., Zhukova, Y.O., 2021. An ecomorphic approach to assessing the biodiversity of soil macrofauna communities in urban parks. Agrology, 4: 114‒130. https://doi.org/10.32819/02101510.32819/021015
]Search in Google Scholar
[
Lavelle, P., Senapati, B., Barros, E., 2003. Soil macrofauna. In Schroth, G., Sinclair, F.L. (eds). Trees, crops and soil fertility: concepts and research methods. Wallingford: CAB International, 2003, p. 303–323.
]Search in Google Scholar
[
Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F., He, F., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90: 663–674. https://doi.org/10.1890/07-1880.110.1890/07-1880.119341137
]Search in Google Scholar
[
Lin, H., 2011. Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal, 75: 2049–2070. https://doi.org/10.2136/sssaj2011.013010.2136/sssaj2011.0130
]Search in Google Scholar
[
Lönnberg, L., Jonsell, M., 2012. Sand pits as habitats for beetles (Coleoptera): does area affect species number and composition? Biodiversity and Conservation, 21: 853–874. https://doi.org/10.1007/s10531-012-0225-210.1007/s10531-012-0225-2
]Search in Google Scholar
[
Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L., Winter, M., 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 26: 1080–1089. https://doi.org/10.1111/jvs.1230810.1111/jvs.12308
]Search in Google Scholar
[
Mansyur, N.I., Hanudin, E., Purwanto, B.H., Utami, S.N.H., 2019. Morphological characteristics and classification of soils formed from acidic sedimentary rocks in North Kalimantan. IOP Conference Series: Earth and Environmental Science, 393: 012083. https://doi.org/10.1088/1755-1315/393/1/01208310.1088/1755-1315/393/1/012083
]Search in Google Scholar
[
Marcon, E., Hérault, B., 2015. Entropart: an R package to measure and partition diversity. Journal of Statistical Software, 67. https://doi.org/10.18637/jss.v067.i0810.18637/jss.v067.i08
]Search in Google Scholar
[
Mathieu, J., Rossi, J.P., Grimaldi, M., Mora, P., Lavelle, P., Rouland, C., 2004. A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40: 300–305. https://doi.org/10.1007/s00374-004-0777-810.1007/s00374-004-0777-8
]Search in Google Scholar
[
Medvedev, S.I., 1952. Larvae of scarabaeid beetles of the fauna of the USSR. Opredeliteli po faune SSSR 47. Moskva, Leningrad: Akademija Nauk SSSR. 344 p.
]Search in Google Scholar
[
Mierzwa, D., 2009. Cepaea vindobonensis (Férussac, 1821) (Gastropoda: Pulmonata: Helicidae) in Central, Northwestern and Western Poland. Folia Malacologica, 17: 185–198. https://doi.org/10.2478/v10125-009-0015-y10.2478/v10125-009-0015-y
]Search in Google Scholar
[
Mougi, A., Nishimura, K., 2009. Species invasion history influences community evolution in a tri-trophic food web model. PLoS ONE, 4: e6731. https://doi.org/10.1371/journal.pone.000673110.1371/journal.pone.0006731272643219701454
]Search in Google Scholar
[
Naiman, R.J., Décamps, H., McClain, M.E., 2005. Riparia: ecology, conservation and management of streamside communities. Amsterdam, The Netherlands: Elsevier Academic Press. 448 p.10.1016/B978-012663315-3/50010-1
]Search in Google Scholar
[
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2018. Community ecology package. R package version 2.5-2.
]Search in Google Scholar
[
Orfánus, T., Stojkovová, D., Nagy, V., Németh, T., 2016. Variability of soil water content controlled by evapotranspiration and groundwater–root zone interaction. Archives of Agronomy and Soil Science, 62: 1602–1613. https://doi.org/10.1080/03650340.2016.115570010.1080/03650340.2016.1155700
]Search in Google Scholar
[
Pauli, N., Oberthür, T., Barrios, E., Conacher, A.J., 2010. Fine-scale spatial and temporal variation in earthworm surface casting activity in agroforestry fields, western Honduras. Pedobiologia, 53: 127–139. https://doi.org/10.1016/j.pedobi.2009.08.00110.1016/j.pedobi.2009.08.001
]Search in Google Scholar
[
Pennisi, B.V., van Iersel, M., 2002. 3 ways to measure medium EC. GMPro, 22: 46–48.
]Search in Google Scholar
[
Pereira, C.S., Lopes, I., Abrantes, I., Sousa, J.P., Chelinho, S., 2019. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180251. https://doi.org/10.1098/rstb.2018.025110.1098/rstb.2018.0251628396230509924
]Search in Google Scholar
[
Phillipson, J., Abel, R., Steel, J., Woodell, S.R.J., 1976. Earthworms and factors governing their distribution in an English beechwood. Pedobiology, 16: 258–285.
]Search in Google Scholar
[
Pindrus, O.M., 2009. Eisenia gordejeffi Michaelsen, 1899. In Akimov, I.A. (ed.). Red data book of Ukraine. Animals. Kyiv: Global Consulting, p. 15.
]Search in Google Scholar
[
Pokarzhevskii, A.D., 1996. The problem of scale in bio-indication of soil contamination. In Krivolutsky, D.A., van Straalen, N.M. (eds). Bioindicator systems for soil pollution. Dordrecht: Kluwer Acad. Publ., p. 111–121. https://doi.org/10.1007/978-94-009-1752-1_1010.1007/978-94-009-1752-1_10
]Search in Google Scholar
[
Pokarzhevskii, A.D., Krivolutskii, D.A., 1997. Problems of estimating and maintaining biodiversity of soil biota in natural and agroecosystems: a case study of chernozem soil. Agriculture, Ecosystems & Environment, 62: 127–133. https://doi.org/10.1016/S0167-8809(96)01139-510.1016/S0167-8809(96)01139-5
]Search in Google Scholar
[
Pokryszko, B.M., Maltz, T.K., Cameron, R.A.D., 2004. Cepaea vindobonensis (Férussac,1821) in the Pieniny Mts. Folia Malacologica, 12: 153–156. https://doi.org/10.12657/folmal.012.01310.12657/folmal.012.013
]Search in Google Scholar
[
Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia, 196: 195–209. https://doi.org/10.1007/s00442-021-04910-110.1007/s00442-021-04910-1813988433852071
]Search in Google Scholar
[
R Core Team, 2020. R: a language and environment for statistical computing. [online]. [cit. 2022-06-21].Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
]Search in Google Scholar
[
Richards, K., Brasington, J., Hughes, F., 2002. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology, 47: 559–579. https://doi.org/10.1046/j.1365-2427.2002.00920.x10.1046/j.1365-2427.2002.00920.x
]Search in Google Scholar
[
Rodrigo-Comino, J., Keshavarzi, A., Senciales-González, J. M., 2021. Evaluating soil quality status of fluvisols at the regional scale: A multidisciplinary approach crossing multiple variables. River Research and Applications, 1–15. https://doi.org/10.1002/rra.386510.1002/rra.3865
]Search in Google Scholar
[
Rosa, M.G. da, Klauberg Filho, O., Bartz, M.L.C., Mafra, Á.L., Sousa, J.P.F.A. de, Baretta, D., 2015. Macrofauna Edáfica e Atributos Físicos e Químicos em Sistemas de Uso do Solo no Planalto Catarinense [Soil macrofauna and physical and chemical properties under soil man agement systems in the Santa Catarina Highlands, Brazil]. Revista Brasileira de Ciência do Solo, 39: 1544–1553. https://doi.org/10.1590/01000683rbcs2015003310.1590/01000683rbcs20150033
]Search in Google Scholar
[
Rozanov, B.G., 2004. Morfologiya pochv [Soil morphology]. Moskva: Akademicheskiy proekt. 432 p
]Search in Google Scholar
[
Ruiz, S.A., Or, D., 2018. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. Journal of The Royal Society Interface, 15: 20180127. https://doi.org/10.1098/rsif.2018.012710.1098/rsif.2018.0127607365629973400
]Search in Google Scholar
[
Saint-Laurent, D., Paradis, R., Drouin, A., Gervais-Beaulac, V., 2016. Impacts of floods on organic arbon concentrations in alluvial soils along hydrological gradients using a figital elevation model (DEM). Water, 8: 208. https://doi.org/10.3390/w805020810.3390/w8050208
]Search in Google Scholar
[
Salomé, C., Guenat, C., Bullinger-Weber, G., Gobat, J.M., Le Bayon, R.C., 2011. Earthworm communities in alluvial forests: influence of altitude, vegetation stages and soil parameters. Pedobiologia, 54. https://doi.org/10.1016/j.pedobi.2011.09.01210.1016/j.pedobi.2011.09.012
]Search in Google Scholar
[
Savinov, N.O., 1936. Fizika pochv [Soil physics]. Moscow: Sielchozgiz Press..
]Search in Google Scholar
[
Schindler, S., Kropik, M., Euller, K., Bunting, S.W., Schulz-Zunkel, C., Hermann, A., Hainz-Renetzeder, C., Kanka, R., Mauerhofer, V., Gasso, V., Krug, A., Lauwaars, S.G., Zulka, K., Henle, K., Hoffmann, M., Biró, M., Essl, F., Jaquier, S., Balázs, L., Borics, G., Hudin, S., Damm, C., Pusch, M., van der Sluis, T., Sebesvari, Z., Wrbka, T., 2013. Floodplain management in temperate regions: is multifunctionality enhancing biodiversity? Environmental Evidence, 2: 10. https://doi.org/10.1186/2047-2382-2-1010.1186/2047-2382-2-10
]Search in Google Scholar
[
Schindler, S., O’Neill, F.H., Biró, M., Damm, C., Gasso, V., Kanka, R., van der Sluis, T., Krug, A., Lauwaars, S.G., Sebesvari, Z., Pusch, M., Baranovsky, B., Ehlert, T., Neukirchen, B., Martin, J.R., Euller, K., Mauerhofer, V., Wrbka, T., 2016. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, 25: 1349–1382. https://doi.org/10.1007/s10531-016-1129-310.1007/s10531-016-1129-3
]Search in Google Scholar
[
Serra-Llobet, A., Jähnig, S.C., Geist, J., Kondolf, G.M., Damm, C., Scholz, M., Lund, J., Opperman, J.J., Yarnell, S.M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T.E., Eisenstein, W., Schmitt, R., 2022. Restoring rivers and floodplains for habitat and flood risk reduction: experiences in multi-benefit floodplain fanagement from California and Germany. Frontiers in Environmental Science, 9: 778568 https://doi.org/10.3389/fenvs.2021.77856810.3389/fenvs.2021.778568
]Search in Google Scholar
[
Sharma, D.K., Tomar, S., Chakraborty, D., 2017. Role of earthworm in improving soil structure and functioning. Current Science, 113: 1064. https://doi.org/10.18520/cs/v113/i06/1064-107110.18520/cs/v113/i06/1064-1071
]Search in Google Scholar
[
Shelford, V.E., 1912. Ecological succession. The Biological Bulletin, 23: 331–370. https://doi.org/10.2307/153600710.2307/1536007
]Search in Google Scholar
[
Shrestha, J., Niklaus, P.A., Pasquale, N., Huber, B., Barnard, R.L., Frossard, E., Schleppi, P., Tockner, K., Luster, J., 2014. Flood pulses control soil nitrogen cycling in a dynamic river floodplain. Geoderma, 228–229: 14–24. https://doi.org/10.1016/j.geoderma.2013.09.01810.1016/j.geoderma.2013.09.018
]Search in Google Scholar
[
Simioni, J.P., Guasselli, L.A., Silva, T.S. da, 2019. Shifting habitat mosaic: identification and mapping. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 14: 1. https://doi.org/10.4136/ambi-agua.224210.4136/ambi-agua.2242
]Search in Google Scholar
[
Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7–31. https://doi.org/10.1016/j.still.2004.03.00810.1016/j.still.2004.03.008
]Search in Google Scholar
[
Sofo, A., Mininni, A.N., Ricciuti, P., 2020. Soil macrofauna: a key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10: 456. https://doi.org/10.3390/agronomy1004045610.3390/agronomy10040456
]Search in Google Scholar
[
Stanford, J.A., Lorang, M.S., Hauer, F.R., 2005. The shifting habitat mosaic of river ecosystems. SIL Proceedings, 1922-2010, 29: 123–136. https://doi.org/10.1080/03680770.2005.1190197910.1080/03680770.2005.11901979
]Search in Google Scholar
[
Statistics. Data Analysis Software System 2014.
]Search in Google Scholar
[
Staudacher, K., Schallhart, N., Pitterl, P., Wallinger, C., Brunner, N., Landl, M., Kromp, B., Glauninger, J., Traugott, M., 2013. Occurrence of Agriotes wireworms in Austrian agricultural land. Journal of Pest Science, 86: 33–39. https://doi.org/10.1007/s10340-011-0393-y10.1007/s10340-011-0393-y357872123459669
]Search in Google Scholar
[
Stockmann, U., Minasny, B., McBratney, A.B., 2014. How fast does soil grow? Geoderma, 216: 48–61. https://doi.org/10.1016/j.geoderma.2013.10.00710.1016/j.geoderma.2013.10.007
]Search in Google Scholar
[
Talbot, C.J., Bennett, E.M., Cassell, K., Hanes, D.M., Minor, E.C., Paerl, H., Raymond, P.A., Vargas, R., Vidon, P.G., Wollheim, W., Xenopoulos, M.A., 2018. impact of flooding on aquatic ecosystem services. Biogeochemistry, 141: 439–461. https://doi.org/10.1007/s10533-018-0449-710.1007/s10533-018-0449-7640473430930510
]Search in Google Scholar
[
Tanner, J.E., Hughes, T.P., Connell, J.H., 1996. The role of history in community dynamics: a modelling approach. Ecology, 77: 108–117. https://doi.org/10.2307/226566010.2307/2265660
]Search in Google Scholar
[
Tarashuko, M.V., 2009. Scutigera coleoptrata (Linnaeus, 1758). In Akimov, I.A. (ed.). Red data book of Ukraine. Animals. Kyiv: Global Consulting, p. 59.
]Search in Google Scholar
[
Thiele, H.-U., 1977. The differences in distribution of carabids in the environment: reactions to abiotic factors and their significance in habitat affinity. In Carabid beetles in their environments. Berlin, Heidelberg: Springer, p. 172–224. https://doi.org/10.1007/978-3-642-81154-8_610.1007/978-3-642-81154-8_6
]Search in Google Scholar
[
Thoms, M.C., 2003. Floodplain–river ecosystems: lateral connections and the implications of human interference. Geomorphology, 56: 335–349. https://doi.org/10.1016/S0169-555X(03)00160-010.1016/S0169-555X(03)00160-0
]Search in Google Scholar
[
Tiunov, A., 2000. Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biology and Biochemistry, 32: 265–275. https://doi.org/10.1016/S0038-0717(99)00165-010.1016/S0038-0717(99)00165-0
]Search in Google Scholar
[
Tiunov, A.V., Scheu, S., 1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biology and Biochemistry, 31: 2039–2048. https://doi.org/10.1016/S0038-0717(99)00127-310.1016/S0038-0717(99)00127-3
]Search in Google Scholar
[
Tockner, K., Bunn, S.E., Gordon, C., Naiman, R.J., Quinn, G.P., Stanford, J.A., 2010. Flood plains: critically threatened ecosystems. In Polunin, N.V.C. (ed.). Aquatic ecosystems. Cambridge: Cambridge University Press, p. 45–62. https://doi.org/10.1017/CBO9780511751790.00610.1017/CBO9780511751790.006
]Search in Google Scholar
[
Umerova, А., Zhukov, O., Yorkina, N., 2022. The soil aggregate structure as a marker of the ecological niche of the micromollusc Vallonia pulchella. Journal of Water and Land Development, 52: 66–74. https://doi.org/10.24425/jwld.2021.139945
]Search in Google Scholar
[
van Looy, K., Vanacker, S., Jochems, H., de Blust, G., Dufrêne, M., 2005. Ground beetle habitat templets and riverbank integrity. River Research and Applications, 21: 1133–1146. https://doi.org/10.1002/rra.87210.1002/rra.872
]Search in Google Scholar
[
Vári, Á., Kozma, Z., Pataki, B., Jolánkai, Z., Kardos, M., Decsi, B., Pinke, Z., Jolánkai, G., Pásztor, L., Condé, S., Sonderegger, G., Czúcz, B., 2022. Disentangling the ecosystem service ‘flood regulation’: mechanisms and relevant ecosystem condition characteristics. Ambio, 51: 1855–1870. https://doi.org/10.1007/s13280-022-01708-010.1007/s13280-022-01708-0920091435212976
]Search in Google Scholar
[
Veneman, P.L.M., Bodine, S.M., 1982. Chemical and morphological soil characteristics in a New England drainage-toposequence. Soil Science Society of America Journal, 46: 359–363. https://doi.org/10.2136/sssaj1982.03615995004600020029x10.2136/sssaj1982.03615995004600020029x
]Search in Google Scholar
[
Voronov, A.T. 1973. Geobotany. Moskva: Vysshaya shkola. 1973
]Search in Google Scholar
[
Wade, A.M., Richter, D.D., Cherkinsky, A., Craft, C.B., Heine, P.R., 2020. Limited carbon contents of centuries old soils forming in legacy sediment. Geomorphology, 354: 107018. https://doi.org/10.1016/j.geomorph.2019.10701810.1016/j.geomorph.2019.107018
]Search in Google Scholar
[
Warren, M.W., Zou, X., 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170: 161–171. https://doi.org/10.1016/S0378-1127(01)00770-810.1016/S0378-1127(01)00770-8
]Search in Google Scholar
[
WRB, 2015. World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
]Search in Google Scholar
[
Wuddivira, M.N., Camps-Roach, G., 2007. Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58: 722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x10.1111/j.1365-2389.2006.00861.x
]Search in Google Scholar
[
Xu, L., Du, H., Zhang, X., 2019. Spatial distribution characteristics of soil salinity and moisture and its influence on agricultural irrigation in the Ili River Valley, China. Sustainability, 11: 7142. https://doi.org/10.3390/su1124714210.3390/su11247142
]Search in Google Scholar
[
Yakovenko, V., 2017. Fractal properties of coarse/fine-related distribution in forest soils on colluvium. In Soil science working for a living. Cham: Springer International Publishing, p. 29–42. https://doi.org/10.1007/978-3-319-45417-7_310.1007/978-3-319-45417-7_3
]Search in Google Scholar
[
Yakovenko, V., Zhukov, O., 2021. Zoogenic structure aggregation in steppe and forest soils. In Dmytruk, Y., Dent, D. (eds). Soils under stress. Cham: Springer International Publishing, p. 111–127. https://doi.org/10.1007/978-3-030-68394-8_1210.1007/978-3-030-68394-8_12
]Search in Google Scholar
[
Yakovenko, V.M., Dubinina, J.J., Zhukova, Y.O., 2019. Spatial heterogeneity of the physical properties of the soil in the floodplain of the small river. Agrology, 2: 219‒228. https://doi.org/10.32819/019031
]Search in Google Scholar
[
Yorkina, N., Maslikova, K., Kunah, O., Zhukov, O., 2018. Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17: 29–45.10.37828/em.2018.17.5
]Search in Google Scholar
[
Yu, J., Li, Y., Han, G., Zhou, D., Fu, Y., Guan, B., Wang, G., Ning, K., Wu, H., Wang, J. 2014. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environmental Earth Sciences, 72: 589–599. https://doi.org/10.1007/s12665-013-2980-010.1007/s12665-013-2980-0
]Search in Google Scholar
[
Zhukov, O.V., Bondarev, D.L., Yermak, Y.I., Fedushko, M.P., 2019. Effects of temperature patterns on the spawining phenology and niche overlap of fish assemblages in the water bodies of the Dnipro River basin. Ecologica Montenegrina, 22: 177–203.10.37828/em.2019.22.15
]Search in Google Scholar
[
Zhukov, O. V., Kovalenko, D. V., Kramarenko, S.S., Kramarenko, A.S., 2019. Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27: 62–68. https://doi.org/10.15421/01191010.15421/011910
]Search in Google Scholar
[
Zhukov, O. V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O., Potapenko, O. V., 2019. Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46: 101–114. https://doi.org/10.2478/foecol-2019-001310.2478/foecol-2019-0013
]Search in Google Scholar
[
Zhukov, O. V., Kunah, O.M., Dubinina, Y.Y., Novikova, V.O., 2018. The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45: 8–23. https://doi.org/10.2478/foecol-2018-000210.2478/foecol-2018-0002
]Search in Google Scholar
[
Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A., Umerova, A., 2021. Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40: 178–188. https://doi.org/10.2478/eko-2021-002010.2478/eko-2021-0020
]Search in Google Scholar
[
Zulu, S.G., Motsa, N.M., Sithole, N.J., Magwaza, L.S., Ncama, K., 2022. Soil macrofauna abundance and taxonomic richness under long-term no-till conservation agriculture in a aemi-arid environment of South Africa. Agronomy, 12: 722. https://doi.org/10.3390/agronomy1203072210.3390/agronomy12030722
]Search in Google Scholar