[
Alscher, R.G., Erturk, N., Heath, L.S, 2002. Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331–1341. https://doi.org/10.1093/jexbot/53.372.133110.1093/jexbot/53.372.1331
]Search in Google Scholar
[
Badea, O., Tanase, M., Georgeta, J., Anisoara, L., Peiov, A., Uhlirova, H., Pajtik, J., Wawrzoniak, J., Shparyk, Y., 2004. Forest health status in the Carpathian Mountains over the period 1997–2001. Environmental Pollution, 130: 93–98. https://doi.org/10.1016/j.envpol.2003.10.02410.1016/j.envpol.2003.10.02415046844
]Search in Google Scholar
[
Bajji, M., Kinet, J.M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell mem brane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36: 61–70. https://doi.org/10.1023/A:101473271454910.1023/A:1014732714549
]Search in Google Scholar
[
Ballian, D., Ravazzi, C., de Rigo, D., Caudullo, G., 2016. Pinus mugo in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds). European atlas of forest tree species. [online]. [cit. 2022-08-11]. Luxembourg: Publications Office of the European Union, p. 125.https://data.europa.eu/doi/10.2760/776635
]Search in Google Scholar
[
Bechtel, A., Oberauer, K., Kostić A., Gratzer, R., Milisavljević, V., Aleksić, N., Stojanović, K., Gross, D., Sachsenhofer, R.F., 2018. Depositional environment and hydrocarbon source potential of the Lower Miocene oil shale deposit in the Aleksinac Basin (Serbia). Organic Geochemistry, 115: 93–112. https://doi.org/10.1016/j.orggeochem.2017.10.00910.1016/j.orggeochem.2017.10.009
]Search in Google Scholar
[
Bell, M.D., Felker-Quinn, E., Kohut, R., 2020. Ozone sensitive plant species on National Park Service lands. [online]. [cit. 2022-08-08]. Natural Resource Report NPS/WASO/NRR—2020/2062. Colorado: U.S. Department of the Interior, National Park Service, Natural Resource Stewardship and Science. https://irma.nps.gov/DataStore/DownloadFile/636658
]Search in Google Scholar
[
Bičárová, S., Sitková, Z., Pavlendová, H., Fleischer, P. Jr., Fleischer, P., Bytnerowicz, A., 2019. The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmospheric Pollution Research, 10: 283–293. https://doi.org/10.1016/j.apr.2018.08.00310.1016/j.apr.2018.08.003
]Search in Google Scholar
[
Boratyński, A., Jasińska, A., Boratyńska, K., Iszkuło, G., Piorkowska, M., 2009. Life span of needles of Pinus mugo Turra: effect of altitude and species origin. Polish Journal of Ecology, 57: 567–572.
]Search in Google Scholar
[
Braun, S., Schindler, C., Rihm, B., 2017. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Science of The Total Environment, 599–600: 637–646. https://doi.org/10.1016/j.scitotenv.2017.04.230.10.1016/j.scitotenv.2017.04.23028494288
]Search in Google Scholar
[
Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P.E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling, J., Werner, W., Emberson, L.D., 2012. DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmospheric Chemistry and Physics, 12: 5537–5562. https://doi.org/10.5194/acp-12-5537-201210.5194/acp-12-5537-2012
]Search in Google Scholar
[
Bytnerowicz, A., Fenn, M.E., Cisneros, R., Schweizer, D., Burley, J., Schilling, S.L., 2019. Nitrogenous air pollutants and ozone exposure in the central Sierra Nevada and White Mountains of California – Distribution and evaluation of ecological risks. Science of the Total Environment, 654: 604–615. https://doi.org/10.1016/j.scitotenv.2018.11.01110.1016/j.scitotenv.2018.11.01130447599
]Search in Google Scholar
[
Coulston, J.W., Smith, G.C., Smith, W.D., 2003. Regional assessment of ozone sensitive tree species using bioindicator plants. Environmental Monitoring and Assessment, 83: 113–127. http://doi.org/10.1023/A:102257850673610.1023/A:102257850673612691526
]Search in Google Scholar
[
Dalstein, L., Ciriani, M.L., 2019. Ozone foliar damage and defoliation monitoring of P. cembra between 2000 and 2016 in the southeast of France. Environmental Pollution, 244: 451–461. https://doi.org/10.1016/j.envpol.2018.10.08110.1016/j.envpol.2018.10.08130359927
]Search in Google Scholar
[
Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G.-A., Sokolik, A., Yurin, V., 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65: 1259–1270. https://doi.org/10.1093/jxb/eru00410.1093/jxb/eru00424520019
]Search in Google Scholar
[
Emberson, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.P., 2000. Modelling stomatal ozone flux across Europe. Environmental Pollution, 109: 403–413. http://doi.org/10.1016/S0269-7491(00)00043-910.1016/S0269-7491(00)00043-9
]Search in Google Scholar
[
EMEP, 2020. Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Status Report 1/2020. [online]. [cit. 2022–09–06]. Oslo: Norwegian Meteorological Institute. https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf
]Search in Google Scholar
[
Escandón, M., Cañal, M.J., Pascual, J., Pinto, G., Correia, B., Amaral, J., Meijón, M., 2016. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiology, 36: 63–77. https://doi.org/10.1093/treephys/tpv12710.1093/treephys/tpv12726764270
]Search in Google Scholar
[
Fleischer, P., Pichler, V., Fleischer, P. Jr, Holko, L., Máliš, F.G., Gömöryová, E., Cudlín, P., Holeksa, J., Michalková, Z., Homolová, Z., Škvarenina, J., Střelcová, K., Hlaváč, P., 2017. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research, 73: 57–71. http://dx.doi.org/10.3354/cr0146110.3354/cr01461
]Search in Google Scholar
[
Flint, H.L., Boyce, B.R., Beattie, D.J., 1967. Index of injury—a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Canadian Journal of Plant Sciences, 47: 229–230. https://doi.org/10.4141/cjps67–04310.4141/cjps67-043
]Search in Google Scholar
[
Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A., Sylva, S.P., 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth and Planetary Science Letters, 408: 263–271. http://doi.org/10.1016/j.epsl.2014.10.02410.1016/j.epsl.2014.10.024
]Search in Google Scholar
[
Freimuth, E.J., Diefendorf, A.F., Lowell, T.V., 2017. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochimica et Cosmochimica Acta, 206: 166–183. http://dx.doi.org/10.1016/j.gca.2017.02.02710.1016/j.gca.2017.02.027
]Search in Google Scholar
[
Furt, F., Simon-Plas, F., Mongrand, S., 2011. Lipids of the Plant Plasma Membrane. In Murphy, A., Schulz, B., Peer, W. (eds). The plant plasma membrane. Plant Cell Monographs, Volume 19. Berlin: Springer, p. 3–30. https://doi.org/10.1007/978-3-642-13431-9_110.1007/978-3-642-13431-9_1
]Search in Google Scholar
[
Goh, C.-H., Ko, S.-M., Koh, S., Kim, Y.-J., Bae, H.-J., 2012. Photosynthesis and environments: photoihibition and repair mechanisms in plants. Journal of Plant Biology, 55: 93–101. https://doi.org/10.1007/s12374-011-9195-210.1007/s12374-011-9195-2
]Search in Google Scholar
[
Hůnová, I., Kurfürst, P., Baláková, L., 2019. Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. Science of The Total Environment, 656: 567–575. https://doi.org/10.1016/j.scitotenv.2018.11.37110.1016/j.scitotenv.2018.11.37130529961
]Search in Google Scholar
[
ICP, 2014. Examples of ozone damage in trees. [online]. [cit. 2022–07–029]. Bangor: UK Centre for Ecology & Hydrology https://icpvegetation.ceh.ac.uk/
]Search in Google Scholar
[
Kopáček, J., Kaňa, J., Bičárová, S., Fernandez, I., Hejzlar, J., Kahounová, M., Norton, S.A., Stuchlík, E., 2017. Climate change increasing calcium and magnesium leaching from granitic Alpine catchments. Environmental Science and Technology, 51: 159–166. https://doi.org/10.1021/acs.est.6b0357510.1021/acs.est.6b0357527997122
]Search in Google Scholar
[
Kormuťák, A., Galgóci, M., Boleček, P., Gömöry, D., 2019. Antioxidant enzyme activity in Pinus mugo Turra, P. sylvestris L. and in their putative hybrids. Biologia, 74: 631–638. https://doi.org/10.2478/s11756-019-00198-y10.2478/s11756-019-00198-y
]Search in Google Scholar
[
Koutsaviti, A., Toutoungy, S., Saliba, R., Loupassaki, S., Tzakou, O., Roussis, V., Ioannou, E., 2021. Antioxidant potential of pine needles: a systematic study on the essential oils and extracts of 46 species of the genus Pinus. Foods, 10: 2304–8158. https://doi.org/10.3390/foods1001014210.3390/foods10010142782736733445574
]Search in Google Scholar
[
Lee, B., Zhu, J.K., 2010. Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protocols, 2010: pdb.prot4970. https://doi.org/10.1101/pdb.prot497010.1101/pdb.prot497020150108
]Search in Google Scholar
[
Levitt, J. (ed.), 1972. Responses of plants to environmental stresses. New York: Academic Press.
]Search in Google Scholar
[
Lichtenthaler, K., 1996. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148: 4–14. https://doi.org/10.1016/S0176-1617(96)80287-210.1016/S0176-1617(96)80287-2
]Search in Google Scholar
[
Lukasová, V., Bucha, T., Mareková, Ľ., Buchholcerová, A., Bičárová, S., 2021. Changes in the greenness of mountain pine (Pinus mugo Turra) in the subalpine zone related to the winter climate. Remote Sensing, 13: 1788. https://doi.org/10.3390/rs1309178810.3390/rs13091788
]Search in Google Scholar
[
Matłok, N., Gorzelany, J., Piechowiak, T., Antos, P., Zardzewiały, M., Balawejder, M., 2020. Impact of ozonation process on the content of bioactive compounds with antioxidant properties in Scots pine (L.) shoots as well as yield and composition of essential oils. Acta Universitatis Cibiniensis. Series E: Food Technology, 24: 146–155. https://doi.org/10.2478/aucft-2020-001310.2478/aucft-2020-0013
]Search in Google Scholar
[
Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, S., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242: 85–95. https://doi.org/10.1016/j.agrformet.2017.04.004.10.1016/j.agrformet.2017.04.004
]Search in Google Scholar
[
Munné-Bosch S., 2005. The role of alpha-tocopherol in plant stress tolerance. Journal of Plant Physiology, 162: 743–748. https://doi.org/10.1016/j.jplph.2005.04.02210.1016/j.jplph.2005.04.02216008098
]Search in Google Scholar
[
Neuner, G., Ambach, D., Aichner, K., 1999. Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiology, 19: 725–732. https://doi.org/10.1093/treephys/19.11.72510.1093/treephys/19.11.72512651311
]Search in Google Scholar
[
Nunn, A.J., Wieser, G., Metzger, U., Löw, M., Wipfler, P., Häberle, K.-H., Matyssek, R., 2007. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions. Environmental Pollution, 146: 629–639. https://doi.org/10.1016/j.envpol.2006.06.01510.1016/j.envpol.2006.06.01516996178
]Search in Google Scholar
[
Pennazio, S., Sapetti, C., 1982. Electrolyte leakage in relation to viral and abiotic stresses inducing necrosis in cowpea leaves. Biologia Plantarum, 24: 218–225. https://doi.org/10.1007/BF0288366710.1007/BF02883667
]Search in Google Scholar
[
Pukacki, P., 2004. The effect of industrial air pollution on membrane lipid composition of Scots pine (Pinus sylvestris L.) needles. Acta Societatis Botanicorum Poloniae, 73: 187–191. http://dx.doi.org/10.5586/asbp.2004.02510.5586/asbp.2004.025
]Search in Google Scholar
[
Saleem, S., Bari, A., Abid, B., Tahir ul Qamar, M., Atif, R.M., Khan, M.S., 2020. QTL Mapping for abiotic stresses in cereals. In Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M. (eds). Environment, climate, plant and vegetation growth. Cham: Springer. 686 p. https://doi.org/10.1007/978-3-030-49732-3_1010.1007/978-3-030-49732-3_10
]Search in Google Scholar
[
SEI, 2014. DO3SE (Deposition of ozone for stomatal exchange). [online]. [cit. 2022–07–15]. Stockholm: Stockholm Environment Institute. https://www.sei-international.org/do3se
]Search in Google Scholar
[
Schaub, M., Calatayud, V., Ferretti, M., Brunialti, G., Lövblad, G., Krause, G., Sanz, M.J 2016. Part VIII: Monitoring of ozone injury. In UNECE ICP Forests Programme Co-ordinating Centre (ed.). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. [online]. [cit.2022-08-25]. 14 p.https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part08.pdf
]Search in Google Scholar
[
Sharps, K., Mills, G., Harmens, H., 2014. Have you seen these ozone injury symptoms? [online]. [cit. 2022-08-19]. Bangor: UK Centre for Ecology and Hydrology. https://icpvegetation.ceh.ac.uk/
]Search in Google Scholar
[
Sicard, P., De Marco, A., Dalstein-Richier, L., Tagliaferro, F., Renou, C., Paoletti, E., 2016. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of The Total Environment, 541: 729–741. http://doi.org/10.1016/j.scitotenv.2015.09.11310.1016/j.scitotenv.2015.09.11326437347
]Search in Google Scholar
[
Sonesson, M., Callaghan, T., 1991. Strategies of survival in plants of the Fennoscandian tundra. [online]. [2022-07-22]. Arctic, 42: 95–105. www.jstor.org/stable/40511069
]Search in Google Scholar
[
Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D., Reupold-Popp, P., Sandermann, H. Jr., Langebartels, C., 1994. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nature Biotechnology, 12: 165–168. https://doi.org/10.1038/nbt0294-16510.1038/nbt0294-165
]Search in Google Scholar
[
Walker, D., Billings, W., De Molenaar, J., 2001. Snow-vegetation interactions in tundra environ-ments. In Jones, H., Pomeroy, J., Walker, D., Hoham, R. (eds.). Snow Ecology: an interdisciplinary examination of snow-covered ecosystems. [online]. [cit. 2022-08-25]. Cambridge: Cambridge University Press, p. 266–324. https://www.nhbs.com/snow-ecology-book
]Search in Google Scholar
[
Wardle, P., 1981. Winter desiccation of conifer needles simulated by artificial freezing. Arctic and Alpine Research, 13: 419–423.10.2307/1551052
]Search in Google Scholar
[
Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I., Mano, J., 2019. Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165: 139–149. https://doi.org/10.1016/j.envexpbot.2019.06.00410.1016/j.envexpbot.2019.06.004
]Search in Google Scholar
[
Zapletal, M., Pretel, J., Chroust, P., Cudlín, P., Edwards-Jonášová, M., Urban, O., Pokorný, R., Czerný, R., Hůnová, I., 2012. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest. Environmental Pollution, 169: 267–273. https://doi.org/10.1016/j.envpol.2012.05.00810.1016/j.envpol.2012.05.00822682306
]Search in Google Scholar