1. bookVolume 50 (2023): Issue 1 (January 2023)
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year
Open Access

Modified electrolyte leakage method for testing the oxidative stability of Pinus mugo Turra under ozone-induced stress

Published Online: 27 Jan 2023
Volume & Issue: Volume 50 (2023) - Issue 1 (January 2023)
Page range: 1 - 15
Received: 12 Sep 2022
Accepted: 07 Nov 2022
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year

Alscher, R.G., Erturk, N., Heath, L.S, 2002. Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331–1341. https://doi.org/10.1093/jexbot/53.372.133110.1093/jexbot/53.372.1331 Search in Google Scholar

Badea, O., Tanase, M., Georgeta, J., Anisoara, L., Peiov, A., Uhlirova, H., Pajtik, J., Wawrzoniak, J., Shparyk, Y., 2004. Forest health status in the Carpathian Mountains over the period 1997–2001. Environmental Pollution, 130: 93–98. https://doi.org/10.1016/j.envpol.2003.10.02410.1016/j.envpol.2003.10.02415046844 Search in Google Scholar

Bajji, M., Kinet, J.M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell mem brane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36: 61–70. https://doi.org/10.1023/A:101473271454910.1023/A:1014732714549 Search in Google Scholar

Ballian, D., Ravazzi, C., de Rigo, D., Caudullo, G., 2016. Pinus mugo in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds). European atlas of forest tree species. [online]. [cit. 2022-08-11]. Luxembourg: Publications Office of the European Union, p. 125.https://data.europa.eu/doi/10.2760/776635 Search in Google Scholar

Bechtel, A., Oberauer, K., Kostić A., Gratzer, R., Milisavljević, V., Aleksić, N., Stojanović, K., Gross, D., Sachsenhofer, R.F., 2018. Depositional environment and hydrocarbon source potential of the Lower Miocene oil shale deposit in the Aleksinac Basin (Serbia). Organic Geochemistry, 115: 93–112. https://doi.org/10.1016/j.orggeochem.2017.10.00910.1016/j.orggeochem.2017.10.009 Search in Google Scholar

Bell, M.D., Felker-Quinn, E., Kohut, R., 2020. Ozone sensitive plant species on National Park Service lands. [online]. [cit. 2022-08-08]. Natural Resource Report NPS/WASO/NRR—2020/2062. Colorado: U.S. Department of the Interior, National Park Service, Natural Resource Stewardship and Science. https://irma.nps.gov/DataStore/DownloadFile/636658 Search in Google Scholar

Bičárová, S., Sitková, Z., Pavlendová, H., Fleischer, P. Jr., Fleischer, P., Bytnerowicz, A., 2019. The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmospheric Pollution Research, 10: 283–293. https://doi.org/10.1016/j.apr.2018.08.00310.1016/j.apr.2018.08.003 Search in Google Scholar

Boratyński, A., Jasińska, A., Boratyńska, K., Iszkuło, G., Piorkowska, M., 2009. Life span of needles of Pinus mugo Turra: effect of altitude and species origin. Polish Journal of Ecology, 57: 567–572. Search in Google Scholar

Braun, S., Schindler, C., Rihm, B., 2017. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Science of The Total Environment, 599–600: 637–646. https://doi.org/10.1016/j.scitotenv.2017. Search in Google Scholar

Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P.E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling, J., Werner, W., Emberson, L.D., 2012. DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmospheric Chemistry and Physics, 12: 5537–5562. https://doi.org/10.5194/acp-12-5537-201210.5194/acp-12-5537-2012 Search in Google Scholar

Bytnerowicz, A., Fenn, M.E., Cisneros, R., Schweizer, D., Burley, J., Schilling, S.L., 2019. Nitrogenous air pollutants and ozone exposure in the central Sierra Nevada and White Mountains of California – Distribution and evaluation of ecological risks. Science of the Total Environment, 654: 604–615. https://doi.org/10.1016/j.scitotenv.2018.11.01110.1016/j.scitotenv.2018.11.01130447599 Search in Google Scholar

Coulston, J.W., Smith, G.C., Smith, W.D., 2003. Regional assessment of ozone sensitive tree species using bioindicator plants. Environmental Monitoring and Assessment, 83: 113–127. http://doi.org/10.1023/A:102257850673610.1023/A:102257850673612691526 Search in Google Scholar

Dalstein, L., Ciriani, M.L., 2019. Ozone foliar damage and defoliation monitoring of P. cembra between 2000 and 2016 in the southeast of France. Environmental Pollution, 244: 451–461. https://doi.org/10.1016/j.envpol.2018.10.08110.1016/j.envpol.2018.10.08130359927 Search in Google Scholar

Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G.-A., Sokolik, A., Yurin, V., 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65: 1259–1270. https://doi.org/10.1093/jxb/eru00410.1093/jxb/eru00424520019 Search in Google Scholar

Emberson, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.P., 2000. Modelling stomatal ozone flux across Europe. Environmental Pollution, 109: 403–413. http://doi.org/10.1016/S0269-7491(00)00043-910.1016/S0269-7491(00)00043-9 Search in Google Scholar

EMEP, 2020. Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Status Report 1/2020. [online]. [cit. 2022–09–06]. Oslo: Norwegian Meteorological Institute. https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf Search in Google Scholar

Escandón, M., Cañal, M.J., Pascual, J., Pinto, G., Correia, B., Amaral, J., Meijón, M., 2016. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiology, 36: 63–77. https://doi.org/10.1093/treephys/tpv12710.1093/treephys/tpv12726764270 Search in Google Scholar

Fleischer, P., Pichler, V., Fleischer, P. Jr, Holko, L., Máliš, F.G., Gömöryová, E., Cudlín, P., Holeksa, J., Michalková, Z., Homolová, Z., Škvarenina, J., Střelcová, K., Hlaváč, P., 2017. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research, 73: 57–71. http://dx.doi.org/10.3354/cr0146110.3354/cr01461 Search in Google Scholar

Flint, H.L., Boyce, B.R., Beattie, D.J., 1967. Index of injury—a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Canadian Journal of Plant Sciences, 47: 229–230. https://doi.org/10.4141/cjps67–04310.4141/cjps67-043 Search in Google Scholar

Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A., Sylva, S.P., 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth and Planetary Science Letters, 408: 263–271. http://doi.org/10.1016/j.epsl.2014.10.02410.1016/j.epsl.2014.10.024 Search in Google Scholar

Freimuth, E.J., Diefendorf, A.F., Lowell, T.V., 2017. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochimica et Cosmochimica Acta, 206: 166–183. http://dx.doi.org/10.1016/j.gca.2017.02.02710.1016/j.gca.2017.02.027 Search in Google Scholar

Furt, F., Simon-Plas, F., Mongrand, S., 2011. Lipids of the Plant Plasma Membrane. In Murphy, A., Schulz, B., Peer, W. (eds). The plant plasma membrane. Plant Cell Monographs, Volume 19. Berlin: Springer, p. 3–30. https://doi.org/10.1007/978-3-642-13431-9_110.1007/978-3-642-13431-9_1 Search in Google Scholar

Goh, C.-H., Ko, S.-M., Koh, S., Kim, Y.-J., Bae, H.-J., 2012. Photosynthesis and environments: photoihibition and repair mechanisms in plants. Journal of Plant Biology, 55: 93–101. https://doi.org/10.1007/s12374-011-9195-210.1007/s12374-011-9195-2 Search in Google Scholar

Hůnová, I., Kurfürst, P., Baláková, L., 2019. Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. Science of The Total Environment, 656: 567–575. https://doi.org/10.1016/j.scitotenv.2018.11.37110.1016/j.scitotenv.2018.11.37130529961 Search in Google Scholar

ICP, 2014. Examples of ozone damage in trees. [online]. [cit. 2022–07–029]. Bangor: UK Centre for Ecology & Hydrology https://icpvegetation.ceh.ac.uk/ Search in Google Scholar

Kopáček, J., Kaňa, J., Bičárová, S., Fernandez, I., Hejzlar, J., Kahounová, M., Norton, S.A., Stuchlík, E., 2017. Climate change increasing calcium and magnesium leaching from granitic Alpine catchments. Environmental Science and Technology, 51: 159–166. https://doi.org/10.1021/acs.est.6b0357510.1021/acs.est.6b0357527997122 Search in Google Scholar

Kormuťák, A., Galgóci, M., Boleček, P., Gömöry, D., 2019. Antioxidant enzyme activity in Pinus mugo Turra, P. sylvestris L. and in their putative hybrids. Biologia, 74: 631–638. https://doi.org/10.2478/s11756-019-00198-y10.2478/s11756-019-00198-y Search in Google Scholar

Koutsaviti, A., Toutoungy, S., Saliba, R., Loupassaki, S., Tzakou, O., Roussis, V., Ioannou, E., 2021. Antioxidant potential of pine needles: a systematic study on the essential oils and extracts of 46 species of the genus Pinus. Foods, 10: 2304–8158. https://doi.org/10.3390/foods1001014210.3390/foods10010142782736733445574 Search in Google Scholar

Lee, B., Zhu, J.K., 2010. Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protocols, 2010: pdb.prot4970. https://doi.org/10.1101/pdb.prot497010.1101/pdb.prot497020150108 Search in Google Scholar

Levitt, J. (ed.), 1972. Responses of plants to environmental stresses. New York: Academic Press. Search in Google Scholar

Lichtenthaler, K., 1996. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148: 4–14. https://doi.org/10.1016/S0176-1617(96)80287-210.1016/S0176-1617(96)80287-2 Search in Google Scholar

Lukasová, V., Bucha, T., Mareková, Ľ., Buchholcerová, A., Bičárová, S., 2021. Changes in the greenness of mountain pine (Pinus mugo Turra) in the subalpine zone related to the winter climate. Remote Sensing, 13: 1788. https://doi.org/10.3390/rs1309178810.3390/rs13091788 Search in Google Scholar

Matłok, N., Gorzelany, J., Piechowiak, T., Antos, P., Zardzewiały, M., Balawejder, M., 2020. Impact of ozonation process on the content of bioactive compounds with antioxidant properties in Scots pine (L.) shoots as well as yield and composition of essential oils. Acta Universitatis Cibiniensis. Series E: Food Technology, 24: 146–155. https://doi.org/10.2478/aucft-2020-001310.2478/aucft-2020-0013 Search in Google Scholar

Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, S., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242: 85–95. https://doi.org/10.1016/j.agrformet.2017. Search in Google Scholar

Munné-Bosch S., 2005. The role of alpha-tocopherol in plant stress tolerance. Journal of Plant Physiology, 162: 743–748. https://doi.org/10.1016/j.jplph.2005.04.02210.1016/j.jplph.2005.04.02216008098 Search in Google Scholar

Neuner, G., Ambach, D., Aichner, K., 1999. Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiology, 19: 725–732. https://doi.org/10.1093/treephys/19.11.72510.1093/treephys/19.11.72512651311 Search in Google Scholar

Nunn, A.J., Wieser, G., Metzger, U., Löw, M., Wipfler, P., Häberle, K.-H., Matyssek, R., 2007. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions. Environmental Pollution, 146: 629–639. https://doi.org/10.1016/j.envpol.2006.06.01510.1016/j.envpol.2006.06.01516996178 Search in Google Scholar

Pennazio, S., Sapetti, C., 1982. Electrolyte leakage in relation to viral and abiotic stresses inducing necrosis in cowpea leaves. Biologia Plantarum, 24: 218–225. https://doi.org/10.1007/BF0288366710.1007/BF02883667 Search in Google Scholar

Pukacki, P., 2004. The effect of industrial air pollution on membrane lipid composition of Scots pine (Pinus sylvestris L.) needles. Acta Societatis Botanicorum Poloniae, 73: 187–191. http://dx.doi.org/10.5586/asbp.2004.02510.5586/asbp.2004.025 Search in Google Scholar

Saleem, S., Bari, A., Abid, B., Tahir ul Qamar, M., Atif, R.M., Khan, M.S., 2020. QTL Mapping for abiotic stresses in cereals. In Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M. (eds). Environment, climate, plant and vegetation growth. Cham: Springer. 686 p. https://doi.org/10.1007/978-3-030-49732-3_1010.1007/978-3-030-49732-3_10 Search in Google Scholar

SEI, 2014. DO3SE (Deposition of ozone for stomatal exchange). [online]. [cit. 2022–07–15]. Stockholm: Stockholm Environment Institute. https://www.sei-international.org/do3se Search in Google Scholar

Schaub, M., Calatayud, V., Ferretti, M., Brunialti, G., Lövblad, G., Krause, G., Sanz, M.J 2016. Part VIII: Monitoring of ozone injury. In UNECE ICP Forests Programme Co-ordinating Centre (ed.). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. [online]. [cit.2022-08-25]. 14 p.https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part08.pdf Search in Google Scholar

Sharps, K., Mills, G., Harmens, H., 2014. Have you seen these ozone injury symptoms? [online]. [cit. 2022-08-19]. Bangor: UK Centre for Ecology and Hydrology. https://icpvegetation.ceh.ac.uk/ Search in Google Scholar

Sicard, P., De Marco, A., Dalstein-Richier, L., Tagliaferro, F., Renou, C., Paoletti, E., 2016. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of The Total Environment, 541: 729–741. http://doi.org/10.1016/j.scitotenv.2015.09.11310.1016/j.scitotenv.2015.09.11326437347 Search in Google Scholar

Sonesson, M., Callaghan, T., 1991. Strategies of survival in plants of the Fennoscandian tundra. [online]. [2022-07-22]. Arctic, 42: 95–105. www.jstor.org/stable/40511069 Search in Google Scholar

Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D., Reupold-Popp, P., Sandermann, H. Jr., Langebartels, C., 1994. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nature Biotechnology, 12: 165–168. https://doi.org/10.1038/nbt0294-16510.1038/nbt0294-165 Search in Google Scholar

Walker, D., Billings, W., De Molenaar, J., 2001. Snow-vegetation interactions in tundra environ-ments. In Jones, H., Pomeroy, J., Walker, D., Hoham, R. (eds.). Snow Ecology: an interdisciplinary examination of snow-covered ecosystems. [online]. [cit. 2022-08-25]. Cambridge: Cambridge University Press, p. 266–324. https://www.nhbs.com/snow-ecology-book Search in Google Scholar

Wardle, P., 1981. Winter desiccation of conifer needles simulated by artificial freezing. Arctic and Alpine Research, 13: 419–423.10.2307/1551052 Search in Google Scholar

Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I., Mano, J., 2019. Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165: 139–149. https://doi.org/10.1016/j.envexpbot.2019.06.00410.1016/j.envexpbot.2019.06.004 Search in Google Scholar

Zapletal, M., Pretel, J., Chroust, P., Cudlín, P., Edwards-Jonášová, M., Urban, O., Pokorný, R., Czerný, R., Hůnová, I., 2012. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest. Environmental Pollution, 169: 267–273. https://doi.org/10.1016/j.envpol.2012.05.00810.1016/j.envpol.2012.05.00822682306 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo