[
Almazol, A.E., Cervancia, C.R., 2014. Pollen sources of bees in Pagbilao Mangrove ecosystem. Philippine Entomologist, 28 (2): 155–170.
]Search in Google Scholar
[
Ambarwulan, W., Sjamsudin, C.E., Syaufina, L., 2016. Geographic information system and analytical hierarchy process for land use planning of beekeeping in forest margin of Bogor Regency, Indonesia. Jurnal Silvikultur Tropika, 7 (3): S50–S57. https://doi.org/10.29244/jsiltrop.7.3.S50-S57
]Search in Google Scholar
[
Amiri, F., Shariff, A.R.B.M., 2012. Application of geographic information systems in land-use suitability evaluation for beekeeping: a case study of Vahregan watershed (Iran). African Journal of Agricultural Research, 7 (1): 89–97. https://doi.org/10.5897/AJAR10.103710.5897/AJAR10.1037
]Search in Google Scholar
[
Baldi, G., Nosetto, M.D., Aragón, R., Aversa, F., Paruelo, J.M., Jobbágy, E.G., 2008. Long-term satellite NDVI data sets: evaluating their ability to detect ecosystem functional changes in South America. Sensors, 8 (9): 5397–5425. https://doi.org/10.3390/s809539710.3390/s8095397370551127873821
]Search in Google Scholar
[
Biesmeijer, JC, de Vries, H., 2001. Exploration of food sources by social insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Sociobiology, 49 (2-3): 89–99. https://doi.org/10.1007/s00265000028910.1007/s002650000289
]Search in Google Scholar
[
Brown, J., Barton, P.S., & Cunningham, S.A., 2020. Flower visitation and land coverassociations of above ground-and below ground-nesting native bees in an agricultural region of south-east Australia. Agriculture, Ecosystems & Environment, 295: 106895. https://doi.org/10.1016/j.agee.2020.10689510.1016/j.agee.2020.106895
]Search in Google Scholar
[
Cayuela, L., Golicher, D.J., Newton, A.C., Kolb, M., De Alburquerque, F.S., Arets, E.J. M.M., Alkemade, J.R.M., Pérez, A.M., 2009. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Tropical Conservation Science, 2 (3): 319–352. https://doi.org/10.1177/19400829090020030410.1177/194008290900200304
]Search in Google Scholar
[
Cely-Santos, M., Philpott, S.M., 2019. Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. Journal of Insect Conservation, 23 (1): 133–146. https://doi.org/10.1007/s10841-018-00122-w10.1007/s10841-018-00122-w
]Search in Google Scholar
[
Cope, G.C., Campbell, J.W., Grodsky, S.M., Ellis, J.D., 2019. Evaluation of nest-site selection of ground-nesting bees and wasps (Hymenoptera) using emergence traps. The Canadian Entomologist, 151 (2): 260–271. DOI: 10.4039/tce.2019.310.4039/tce.2019.3
]Search in Google Scholar
[
Daud, M., 2021. Nesting habitat and honey production of asiatic honey bees (Apis cerana) in the protected forest in Enrekang Regency, Indonesia. In IOP Conference Series: Earth and Environmental Science, 886 (1): 012111. DOI 10.1088/1755-1315/886/1/01211110.1088/1755-1315/886/1/012111
]Search in Google Scholar
[
Egawa, S., Itino, T., 2020. Contrasting altitudinal patterns of diversity between bumblebees and bumblebee-visited flowers: poverty of bumblebee diversity in a high mountain of Japan. Ecological Research, 35 (3):504–510. https://doi.org/10.1111/1440-1703.101010.1111/1440-1703.1010
]Search in Google Scholar
[
Elith, J., Leathwick, J., 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, 13 (3): 265–275. https://doi.org/10.1111/j.1472-4642.2007.00340.x10.1111/j.1472-4642.2007.00340.x
]Search in Google Scholar
[
Figueira Fernandes Elizalde, S.R., 2020. Bee diversity in Angola and community change along an altitudinal gradient at Serra da Chela (Bruco). [online]. [cit. 2022-08-26] Master’s thesis. Faculty of Science, Department of Biological Sciences. http://hdl.handle.net/11427/32262
]Search in Google Scholar
[
Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., 2014. Maxent is not a presence–absence method: a comment on Thibaud et al. Methods in Ecology and Evolution, 5 (11): 1192–1197. https://doi.org/10.1111/2041-210X.1225210.1111/2041-210X.12252
]Search in Google Scholar
[
Heard, T.A., 1999. The role of stingless bees in crop pollination. Annual Review of Entomology, 44 (1):183–206. https://doi.org/10.1146/annurev.ento.44.1.18310.1146/annurev.ento.44.1.18315012371
]Search in Google Scholar
[
Hoiss, B., Krauss, J., Potts, S.G., Roberts, S., Steffan-Dewenter, I., 2012. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279 (1746): 4447–4456.10.1098/rspb.2012.1581347980522933374
]Search in Google Scholar
[
Jaffé, R., Veiga, J.C., Pope, N.S., Lanes, É.C., Carvalho, C.S., Alves, R., Andrade, S.C.S., Arias, M.C., Bonatti, V., Carvalho, A.T., de Castro, M.S., Contrera, F.A.L., Francoy, T.M., Freitas, B.M., Giannini, T.C., Hrncir, M., Martins, C.F.,Oliveira, G., Saraiva, A.M., Souza, B.A., Imperatriz-Fonseca, V.L., 2019. Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 12 (6): 1164–1177. https://doi.org/10.1111/eva.1279410.1111/eva.12794659787131293629
]Search in Google Scholar
[
Jarau, S., Hrncir, M., Zucchi, R., Barth, F.G., 2000. Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie, 31 (1): 81–91. https://doi.org/10.1051/apido:200010810.1051/apido:2000108
]Search in Google Scholar
[
Jha, S., Kremen, C., 2013. Resource diversity and landscape-level homogeneity drive native bee foraging. Proceedings of the National Academy of Sciences, 110 (2): 555–558. https://doi.org/10.1073/pnas.120868211010.1073/pnas.1208682110354574623267118
]Search in Google Scholar
[
Karunaratne, W.A.I.P., Edirisinghe, J.P., 2009. Diversity of bees at different altitudes in the Knuckles forest reserve. Ceylon Journal of Science (Biological Sciences), 37 (1): 61–72. http://doi.org/10.4038/cjsbs.v37i1.49610.4038/cjsbs.v37i1.496
]Search in Google Scholar
[
Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D.,Schröder, B., Lindenborn, J., Reinfelder,V., Wilting, A., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19 (11): 1366–1379.10.1111/ddi.12096
]Search in Google Scholar
[
Kumar, K., Joshi, P.C., Arya, M.K., Nath, P., 2019. Altitude and seasonality of the hymenopteran insects associated with high altitude forest of Nanda Devi Biosphere Reserve, Western Himalaya, India. Journal of Environment and Bio-Sciences, 33 (1): 19–29.
]Search in Google Scholar
[
Kupsch, S., Palaoag, T.D., Balcita, A.P., 2019. Apiculturists’ issues and challenges: a basis for invoking IT model in beekeeping industry. IOP Conference Series: Materials Science and Engineering, 482 (1): 012031. DOI 10.1088/1757-899X/482/1/01203110.1088/1757-899X/482/1/012031
]Search in Google Scholar
[
Liow, L.H., Sodhi, N.S., Elmqvist, T., 2001. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology, 38 (1): 180–192. https://doi.org/10.1046/j.1365-2664.2001.00582.x10.1046/j.1365-2664.2001.00582.x
]Search in Google Scholar
[
Maris, N., Mansor, S., Shafri, H., 2008. Apicultural site zonation using GIS and Multi-Criteria Decision analysis. Pertanika Journal Tropical Agricultural Science, 31 (2): 147–162.
]Search in Google Scholar
[
McNally, L.C., Schneider, S.S., 1996. Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environmental Entomology, 25 (3): 643–652. https://doi.org/10.1093/ee/25.3.64310.1093/ee/25.3.643
]Search in Google Scholar
[
Merow, C., Smith, M.J., Silander Jr, J.A., 2013. A practical guide to MaxEnt for modelling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36 (10): 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x10.1111/j.1600-0587.2013.07872.x
]Search in Google Scholar
[
Nagir, M.T., Atmowidi, T., Kahono, S., 2016. The distribution and nest-site preference of Apis dorsata binghami at Maros Forest, South Sulawesi, Indonesia. Journal of Insect Biodiversity, 4 (23): 1–14. https://doi.org/10.12976/jib/2016.4.2310.12976/jib/2016.4.23
]Search in Google Scholar
[
Osborne, J.L., Martin, A.P., Carrek, N.L., Swain, J.L., Knight, M.E., Goulson, D., Hale, R.J., Sanderson, R.A., 2008. Bumblebee flight distances in relation to the forage landscape. Journal of Animal Ecology, 77 (2): 406–415. DOI: 10.1111/j.1365-2656.2007.01333.x10.1111/j.1365-2656.2007.01333.x17986207
]Search in Google Scholar
[
Oyen, K.J., Giri, S., Dillon, M.E., 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology, 59: 52–57. https://doi.org/10.1016/j.jtherbio.2016.04.01510.1016/j.jtherbio.2016.04.01527264888
]Search in Google Scholar
[
Pantoja, G., Gómez, M., Contreras, C., Grimau, L., Montenegro, G., 2017. Determination of suitable zones for apitourism using multi-criteria evaluation in geographic information systems: a case study in the O’Higgins Region, Chile. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura, 44 (2): 139–153. http://dx.doi.org/10.7764/rcia.v44i2.171210.7764/rcia.v44i2.1712
]Search in Google Scholar
[
Raina, R.H., Saini, M.S., Khan, Z.H., 2019. Altitudinal food preference of bumblebee species (Hymenoptera: Apidae) from Indian Himalaya. Journal of Entomology and Zoology Studies, 7: 234–237.
]Search in Google Scholar
[
Razanajatovo, M., Föhr, C., van Kleunen, M., Fischer, M., 2018. Phenological shifts and flower visitation of 185 lowland and alpine species in a lowland botanical garden. Alpine Botany, 128 (1): 23–33. https://doi.org/10.1007/s00035-018-0201-x10.1007/s00035-018-0201-x
]Search in Google Scholar
[
Riedinger, V., Mitesser, O., Hovestadt, T., Steffan-Dewenter, I., olzschuh, A., 2015. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology, 96 (5): 1351–1360. https://doi.org/10.1890/14-1124.110.1890/14-1124.126236848
]Search in Google Scholar
[
Ropars, L., Affre, L., Schurr, L., Flacher, F., Genoud, D., Mutillod, C., Geslin, B., 2020. Land cover composition, local plant community composition and honeybee colony density affect wild bee species assemblages in a Mediterranean biodiversity hot-spot. Acta Oecologica, 104:103546. https://doi.org/10.1016/j.actao.2020.10354610.1016/j.actao.2020.103546
]Search in Google Scholar
[
Roulston, T.A.H., Goodell, K., 2011. The role of resources and risks in regulating wild bee populations. Annual Review of Entomology, 56: 293–312. DOI: 10.1146/annurevento-120709-144802
]Search in Google Scholar
[
Sardiñas, H.S., Kremen, C., 2014. Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic and Applied Ecology, 15 (2): 161–168. https://doi.org/10.1016/j.baae.2014.02.00410.1016/j.baae.2014.02.004
]Search in Google Scholar
[
Sardiñas, H.S., Tom, K., Ponisio, L.C., Rominger, A., Kremen, C., 2016. Sunflower (Helianthus annuus) pollination in California’s Central Valley is limited by native bee nest site location. Ecological Applications, 26 (2): 438–447. https://doi.org/10.1890/15-003310.1890/15-003327209786
]Search in Google Scholar
[
Sari, F., 2020. Assessment of land-use change effects on future beekeeping suitability via CA-Markov prediction model. Journal of Apicultural Science, 64 (2): 263–276. https://doi.org/10.2478/jas-2020-002010.2478/jas-2020-0020
]Search in Google Scholar
[
Sari, F., Ceylan, D.A., Özcan, M.M., Özcan, M.M., 2020. A comparison of multicriteria decision analysis techniques for determining beekeeping suitability. Apidologie,51(4): 481–498. https://doi.org/10.1007/s13592-020-00736-710.1007/s13592-020-00736-7
]Search in Google Scholar
[
Støa, B., Halvorsen, R., Stokland, J.N., Gusarov, V.I., 2019. How much is enough? Influence of number of presence observations on the performance of species distribution models. Sommerfeltia, 39 (1): 1–28. https://doi.org/10.2478/som-2019-000110.2478/som-2019-0001
]Search in Google Scholar
[
Tenzin, K., Katel, O., 2019. Diversity and abundance of bees and wasps (Hymenoptera: Aculeata) in North Central Bhutan. Bhutan Journal of Natural Resources and Development, 6 (1): 12–18. https://doi.org/10.17102/cnr.2019.0210.17102/cnr.2019.02
]Search in Google Scholar
[
Thomas, S.G., Varghese, A., Roy, P., Bradbear, N., Potts, S.G., Davidar, P., 2009. Characteristics of trees used as nest sites by Apis dorsata (Hymenoptera, Apidae) in the Nilgiri Biosphere Reserve, India. Journal of Tropical Ecology, 25 (5): 559–562. https://doi.org/10.1017/S026646740900621X10.1017/S026646740900621X
]Search in Google Scholar
[
Watson, J.C., Wolf, A.T., Ascher, J.S., 2011. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards. Environmental Entomology, 40 (3): 621–632. https://doi.org/10.1603/EN1023110.1603/EN1023122251640
]Search in Google Scholar
[
Westerfelt, P., Weslien, J., Widenfalk, O., 2018. Population patterns in relation to food and nesting resource for two cavity-nesting bee species in young boreal forest stands. Forest Ecology and Management, 430: 629–638. https://doi.org/10.1016/j.foreco.2018.08.05310.1016/j.foreco.2018.08.053
]Search in Google Scholar
[
Widhiono, I., Sudiana, E., Darsono, D., 2017. Diversity of wild bees along elevational gradient in an agricultural area in Central Java, Indonesia. Psyche: A Journal of Entomology, 2017: 2968414. https://doi.org/10.1155/2017/296841410.1155/2017/2968414
]Search in Google Scholar
[
Winfree, R., 2010. The conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 1195 (1): 169–197. https://doi.org/10.1111/j.1749-6632.2010.05449.x10.1111/j.1749-6632.2010.05449.x20536823
]Search in Google Scholar
[
Wisz, M.S., Hijmans, R.J., Li,J., Peterson, A.T., Graham, C.H., Guisan, A., NCEAS, Predicting Species Distributions Working Group, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14 (5): 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x10.1111/j.1472-4642.2008.00482.x
]Search in Google Scholar
[
Zhang, M.G., Zhou, Z.K., Chen, W.Y., Slik, J.F., Cannon, C.H., Raes, N., 2012. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153: 257–264. https://doi.org/10.1016/j.biocon.2012.04.02310.1016/j.biocon.2012.04.023
]Search in Google Scholar