1. bookVolume 50 (2023): Issue 1 (January 2023)
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year
Open Access

Diversity and spatial distribution of native bees in Mt. Banahaw de Lucban, Philippines

Published Online: 27 Jan 2023
Volume & Issue: Volume 50 (2023) - Issue 1 (January 2023)
Page range: 44 - 54
Received: 05 Sep 2022
Accepted: 25 Nov 2022
Journal Details
First Published
16 Apr 2017
Publication timeframe
2 times per year

Almazol, A.E., Cervancia, C.R., 2014. Pollen sources of bees in Pagbilao Mangrove ecosystem. Philippine Entomologist, 28 (2): 155–170. Search in Google Scholar

Ambarwulan, W., Sjamsudin, C.E., Syaufina, L., 2016. Geographic information system and analytical hierarchy process for land use planning of beekeeping in forest margin of Bogor Regency, Indonesia. Jurnal Silvikultur Tropika, 7 (3): S50–S57. https://doi.org/10.29244/jsiltrop.7.3.S50-S57 Search in Google Scholar

Amiri, F., Shariff, A.R.B.M., 2012. Application of geographic information systems in land-use suitability evaluation for beekeeping: a case study of Vahregan watershed (Iran). African Journal of Agricultural Research, 7 (1): 89–97. https://doi.org/10.5897/AJAR10.103710.5897/AJAR10.1037 Search in Google Scholar

Baldi, G., Nosetto, M.D., Aragón, R., Aversa, F., Paruelo, J.M., Jobbágy, E.G., 2008. Long-term satellite NDVI data sets: evaluating their ability to detect ecosystem functional changes in South America. Sensors, 8 (9): 5397–5425. https://doi.org/10.3390/s809539710.3390/s8095397370551127873821 Search in Google Scholar

Biesmeijer, JC, de Vries, H., 2001. Exploration of food sources by social insect colonies: a revision of the scout-recruit concept. Behavioral Ecology and Sociobiology, 49 (2-3): 89–99. https://doi.org/10.1007/s00265000028910.1007/s002650000289 Search in Google Scholar

Brown, J., Barton, P.S., & Cunningham, S.A., 2020. Flower visitation and land coverassociations of above ground-and below ground-nesting native bees in an agricultural region of south-east Australia. Agriculture, Ecosystems & Environment, 295: 106895. https://doi.org/10.1016/j.agee.2020.10689510.1016/j.agee.2020.106895 Search in Google Scholar

Cayuela, L., Golicher, D.J., Newton, A.C., Kolb, M., De Alburquerque, F.S., Arets, E.J. M.M., Alkemade, J.R.M., Pérez, A.M., 2009. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Tropical Conservation Science, 2 (3): 319–352. https://doi.org/10.1177/19400829090020030410.1177/194008290900200304 Search in Google Scholar

Cely-Santos, M., Philpott, S.M., 2019. Local and landscape habitat influences on bee diversity in agricultural landscapes in Anolaima, Colombia. Journal of Insect Conservation, 23 (1): 133–146. https://doi.org/10.1007/s10841-018-00122-w10.1007/s10841-018-00122-w Search in Google Scholar

Cope, G.C., Campbell, J.W., Grodsky, S.M., Ellis, J.D., 2019. Evaluation of nest-site selection of ground-nesting bees and wasps (Hymenoptera) using emergence traps. The Canadian Entomologist, 151 (2): 260–271. DOI: 10.4039/tce.2019.310.4039/tce.2019.3 Search in Google Scholar

Daud, M., 2021. Nesting habitat and honey production of asiatic honey bees (Apis cerana) in the protected forest in Enrekang Regency, Indonesia. In IOP Conference Series: Earth and Environmental Science, 886 (1): 012111. DOI 10.1088/1755-1315/886/1/01211110.1088/1755-1315/886/1/012111 Search in Google Scholar

Egawa, S., Itino, T., 2020. Contrasting altitudinal patterns of diversity between bumblebees and bumblebee-visited flowers: poverty of bumblebee diversity in a high mountain of Japan. Ecological Research, 35 (3):504–510. https://doi.org/10.1111/1440-1703.101010.1111/1440-1703.1010 Search in Google Scholar

Elith, J., Leathwick, J., 2007. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, 13 (3): 265–275. https://doi.org/10.1111/j.1472-4642.2007.00340.x10.1111/j.1472-4642.2007.00340.x Search in Google Scholar

Figueira Fernandes Elizalde, S.R., 2020. Bee diversity in Angola and community change along an altitudinal gradient at Serra da Chela (Bruco). [online]. [cit. 2022-08-26] Master’s thesis. Faculty of Science, Department of Biological Sciences. http://hdl.handle.net/11427/32262 Search in Google Scholar

Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., 2014. Maxent is not a presence–absence method: a comment on Thibaud et al. Methods in Ecology and Evolution, 5 (11): 1192–1197. https://doi.org/10.1111/2041-210X.1225210.1111/2041-210X.12252 Search in Google Scholar

Heard, T.A., 1999. The role of stingless bees in crop pollination. Annual Review of Entomology, 44 (1):183–206. https://doi.org/10.1146/annurev.ento.44.1.18310.1146/annurev.ento.44.1.18315012371 Search in Google Scholar

Hoiss, B., Krauss, J., Potts, S.G., Roberts, S., Steffan-Dewenter, I., 2012. Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279 (1746): 4447–4456.10.1098/rspb.2012.1581347980522933374 Search in Google Scholar

Jaffé, R., Veiga, J.C., Pope, N.S., Lanes, É.C., Carvalho, C.S., Alves, R., Andrade, S.C.S., Arias, M.C., Bonatti, V., Carvalho, A.T., de Castro, M.S., Contrera, F.A.L., Francoy, T.M., Freitas, B.M., Giannini, T.C., Hrncir, M., Martins, C.F.,Oliveira, G., Saraiva, A.M., Souza, B.A., Imperatriz-Fonseca, V.L., 2019. Landscape genomics to the rescue of a tropical bee threatened by habitat loss and climate change. Evolutionary Applications, 12 (6): 1164–1177. https://doi.org/10.1111/eva.1279410.1111/eva.12794659787131293629 Search in Google Scholar

Jarau, S., Hrncir, M., Zucchi, R., Barth, F.G., 2000. Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie, 31 (1): 81–91. https://doi.org/10.1051/apido:200010810.1051/apido:2000108 Search in Google Scholar

Jha, S., Kremen, C., 2013. Resource diversity and landscape-level homogeneity drive native bee foraging. Proceedings of the National Academy of Sciences, 110 (2): 555–558. https://doi.org/10.1073/pnas.120868211010.1073/pnas.1208682110354574623267118 Search in Google Scholar

Karunaratne, W.A.I.P., Edirisinghe, J.P., 2009. Diversity of bees at different altitudes in the Knuckles forest reserve. Ceylon Journal of Science (Biological Sciences), 37 (1): 61–72. http://doi.org/10.4038/cjsbs.v37i1.49610.4038/cjsbs.v37i1.496 Search in Google Scholar

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D.,Schröder, B., Lindenborn, J., Reinfelder,V., Wilting, A., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19 (11): 1366–1379.10.1111/ddi.12096 Search in Google Scholar

Kumar, K., Joshi, P.C., Arya, M.K., Nath, P., 2019. Altitude and seasonality of the hymenopteran insects associated with high altitude forest of Nanda Devi Biosphere Reserve, Western Himalaya, India. Journal of Environment and Bio-Sciences, 33 (1): 19–29. Search in Google Scholar

Kupsch, S., Palaoag, T.D., Balcita, A.P., 2019. Apiculturists’ issues and challenges: a basis for invoking IT model in beekeeping industry. IOP Conference Series: Materials Science and Engineering, 482 (1): 012031. DOI 10.1088/1757-899X/482/1/01203110.1088/1757-899X/482/1/012031 Search in Google Scholar

Liow, L.H., Sodhi, N.S., Elmqvist, T., 2001. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology, 38 (1): 180–192. https://doi.org/10.1046/j.1365-2664.2001.00582.x10.1046/j.1365-2664.2001.00582.x Search in Google Scholar

Maris, N., Mansor, S., Shafri, H., 2008. Apicultural site zonation using GIS and Multi-Criteria Decision analysis. Pertanika Journal Tropical Agricultural Science, 31 (2): 147–162. Search in Google Scholar

McNally, L.C., Schneider, S.S., 1996. Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environmental Entomology, 25 (3): 643–652. https://doi.org/10.1093/ee/25.3.64310.1093/ee/25.3.643 Search in Google Scholar

Merow, C., Smith, M.J., Silander Jr, J.A., 2013. A practical guide to MaxEnt for modelling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36 (10): 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x10.1111/j.1600-0587.2013.07872.x Search in Google Scholar

Nagir, M.T., Atmowidi, T., Kahono, S., 2016. The distribution and nest-site preference of Apis dorsata binghami at Maros Forest, South Sulawesi, Indonesia. Journal of Insect Biodiversity, 4 (23): 1–14. https://doi.org/10.12976/jib/2016.4.2310.12976/jib/2016.4.23 Search in Google Scholar

Osborne, J.L., Martin, A.P., Carrek, N.L., Swain, J.L., Knight, M.E., Goulson, D., Hale, R.J., Sanderson, R.A., 2008. Bumblebee flight distances in relation to the forage landscape. Journal of Animal Ecology, 77 (2): 406–415. DOI: 10.1111/j.1365-2656.2007.01333.x10.1111/j.1365-2656.2007.01333.x17986207 Search in Google Scholar

Oyen, K.J., Giri, S., Dillon, M.E., 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology, 59: 52–57. https://doi.org/10.1016/j.jtherbio.2016.04.01510.1016/j.jtherbio.2016.04.01527264888 Search in Google Scholar

Pantoja, G., Gómez, M., Contreras, C., Grimau, L., Montenegro, G., 2017. Determination of suitable zones for apitourism using multi-criteria evaluation in geographic information systems: a case study in the O’Higgins Region, Chile. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura, 44 (2): 139–153. http://dx.doi.org/10.7764/rcia.v44i2.171210.7764/rcia.v44i2.1712 Search in Google Scholar

Raina, R.H., Saini, M.S., Khan, Z.H., 2019. Altitudinal food preference of bumblebee species (Hymenoptera: Apidae) from Indian Himalaya. Journal of Entomology and Zoology Studies, 7: 234–237. Search in Google Scholar

Razanajatovo, M., Föhr, C., van Kleunen, M., Fischer, M., 2018. Phenological shifts and flower visitation of 185 lowland and alpine species in a lowland botanical garden. Alpine Botany, 128 (1): 23–33. https://doi.org/10.1007/s00035-018-0201-x10.1007/s00035-018-0201-x Search in Google Scholar

Riedinger, V., Mitesser, O., Hovestadt, T., Steffan-Dewenter, I., olzschuh, A., 2015. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology, 96 (5): 1351–1360. https://doi.org/10.1890/14-1124.110.1890/14-1124.126236848 Search in Google Scholar

Ropars, L., Affre, L., Schurr, L., Flacher, F., Genoud, D., Mutillod, C., Geslin, B., 2020. Land cover composition, local plant community composition and honeybee colony density affect wild bee species assemblages in a Mediterranean biodiversity hot-spot. Acta Oecologica, 104:103546. https://doi.org/10.1016/j.actao.2020.10354610.1016/j.actao.2020.103546 Search in Google Scholar

Roulston, T.A.H., Goodell, K., 2011. The role of resources and risks in regulating wild bee populations. Annual Review of Entomology, 56: 293–312. DOI: 10.1146/annurevento-120709-144802 Search in Google Scholar

Sardiñas, H.S., Kremen, C., 2014. Evaluating nesting microhabitat for ground-nesting bees using emergence traps. Basic and Applied Ecology, 15 (2): 161–168. https://doi.org/10.1016/j.baae.2014.02.00410.1016/j.baae.2014.02.004 Search in Google Scholar

Sardiñas, H.S., Tom, K., Ponisio, L.C., Rominger, A., Kremen, C., 2016. Sunflower (Helianthus annuus) pollination in California’s Central Valley is limited by native bee nest site location. Ecological Applications, 26 (2): 438–447. https://doi.org/10.1890/15-003310.1890/15-003327209786 Search in Google Scholar

Sari, F., 2020. Assessment of land-use change effects on future beekeeping suitability via CA-Markov prediction model. Journal of Apicultural Science, 64 (2): 263–276. https://doi.org/10.2478/jas-2020-002010.2478/jas-2020-0020 Search in Google Scholar

Sari, F., Ceylan, D.A., Özcan, M.M., Özcan, M.M., 2020. A comparison of multicriteria decision analysis techniques for determining beekeeping suitability. Apidologie,51(4): 481–498. https://doi.org/10.1007/s13592-020-00736-710.1007/s13592-020-00736-7 Search in Google Scholar

Støa, B., Halvorsen, R., Stokland, J.N., Gusarov, V.I., 2019. How much is enough? Influence of number of presence observations on the performance of species distribution models. Sommerfeltia, 39 (1): 1–28. https://doi.org/10.2478/som-2019-000110.2478/som-2019-0001 Search in Google Scholar

Tenzin, K., Katel, O., 2019. Diversity and abundance of bees and wasps (Hymenoptera: Aculeata) in North Central Bhutan. Bhutan Journal of Natural Resources and Development, 6 (1): 12–18. https://doi.org/10.17102/cnr.2019.0210.17102/cnr.2019.02 Search in Google Scholar

Thomas, S.G., Varghese, A., Roy, P., Bradbear, N., Potts, S.G., Davidar, P., 2009. Characteristics of trees used as nest sites by Apis dorsata (Hymenoptera, Apidae) in the Nilgiri Biosphere Reserve, India. Journal of Tropical Ecology, 25 (5): 559–562. https://doi.org/10.1017/S026646740900621X10.1017/S026646740900621X Search in Google Scholar

Watson, J.C., Wolf, A.T., Ascher, J.S., 2011. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards. Environmental Entomology, 40 (3): 621–632. https://doi.org/10.1603/EN1023110.1603/EN1023122251640 Search in Google Scholar

Westerfelt, P., Weslien, J., Widenfalk, O., 2018. Population patterns in relation to food and nesting resource for two cavity-nesting bee species in young boreal forest stands. Forest Ecology and Management, 430: 629–638. https://doi.org/10.1016/j.foreco.2018.08.05310.1016/j.foreco.2018.08.053 Search in Google Scholar

Widhiono, I., Sudiana, E., Darsono, D., 2017. Diversity of wild bees along elevational gradient in an agricultural area in Central Java, Indonesia. Psyche: A Journal of Entomology, 2017: 2968414. https://doi.org/10.1155/2017/296841410.1155/2017/2968414 Search in Google Scholar

Winfree, R., 2010. The conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 1195 (1): 169–197. https://doi.org/10.1111/j.1749-6632.2010.05449.x10.1111/j.1749-6632.2010.05449.x20536823 Search in Google Scholar

Wisz, M.S., Hijmans, R.J., Li,J., Peterson, A.T., Graham, C.H., Guisan, A., NCEAS, Predicting Species Distributions Working Group, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14 (5): 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x10.1111/j.1472-4642.2008.00482.x Search in Google Scholar

Zhang, M.G., Zhou, Z.K., Chen, W.Y., Slik, J.F., Cannon, C.H., Raes, N., 2012. Using species distribution modeling to improve conservation and land use planning of Yunnan, China. Biological Conservation, 153: 257–264. https://doi.org/10.1016/j.biocon.2012.04.02310.1016/j.biocon.2012.04.023 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo