This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Ali, A., Santoro, P., Mori, J., Ferrante, A., and Cocetta, G. (2023). Effect of UV-B elicitation on spearmint’s (Mentha spicata L.) morpho-physiological traits and secondary metabolites production. Plant Growth Regulation, 104, 63–76, https://doi.org/10.1007/s10725-023-01028-7.AliA.SantoroP.MoriJ.FerranteA.CocettaG. (2023). Effect of UV-B elicitation on spearmint’s (Mentha spicata L.) morpho-physiological traits and secondary metabolites production. Plant Growth Regulation, 104, 63–76, https://doi.org/10.1007/s10725-023-01028-7.Search in Google Scholar
Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18(2), 1379–1394, https://doi.org/10.5194/acp-18-1379-2018.BallW. T.AlsingJ.MortlockD. J.StaehelinJ.HaighJ. D.PeterT.TummonF.StübiR.StenkeA.AndersonJ.BourassaA.DavisS. M.DegensteinD.FrithS.FroidevauxL.RothC.SofievaV.WangR.WildJ.YuP.ZiemkeJ. R.RozanovE. V. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18(2), 1379–1394, https://doi.org/10.5194/acp-18-1379-2018.Search in Google Scholar
Chen, Y., Li, T., Yang, Q., Zhang, Y., Zou, J., Bian, Z., and Wen, X. (2019). UVA radiation is beneficial for yield and quality of indoor cultivated lettuce. Frontiers in Plant Science, 10, 1563, https://doi.org/10.3389/fpls.2019.01563.ChenY.LiT.YangQ.ZhangY.ZouJ.BianZ.WenX. (2019). UVA radiation is beneficial for yield and quality of indoor cultivated lettuce. Frontiers in Plant Science, 10, 1563, https://doi.org/10.3389/fpls.2019.01563.Search in Google Scholar
Desta, B., and Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1, https://doi.org/10.1186/s40538-020-00199-z.DestaB.AmareG. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1, https://doi.org/10.1186/s40538-020-00199-z.Search in Google Scholar
Dogan, A., Topcu, Y., and Erkan, M. (2018). UV-C illumination maintains postharvest quality of minimally processed broccoli florets under modified atmosphere packaging. Acta Horticulturae, 1194, 537–544, https://doi.org/10.17660/ActaHortic.2018.1194.78.DoganA.TopcuY.ErkanM. (2018). UV-C illumination maintains postharvest quality of minimally processed broccoli florets under modified atmosphere packaging. Acta Horticulturae, 1194, 537–544, https://doi.org/10.17660/ActaHortic.2018.1194.78.Search in Google Scholar
D’orazio, J., Jarrett, S., Amaro-Ortiz, A., and Scott, T. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248, https://doi.org/10.3390/ijms140612222.D’orazioJ.JarrettS.Amaro-OrtizA.ScottT. (2013). UV radiation and the skin. International Journal of Molecular Sciences, 14(6), 12222–12248, https://doi.org/10.3390/ijms140612222.Search in Google Scholar
Ebrahimi, M., Souri, M. K., Mousavi, A., and Sahebani, N. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8, 19, https://doi.org/10.1186/s40538-021-00216-9.EbrahimiM.SouriM. K.MousaviA.SahebaniN. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8, 19, https://doi.org/10.1186/s40538-021-00216-9.Search in Google Scholar
Escobar-Bravo, R., Klinkhamer, P. G. L., and Leiss, K. A. (2017). Interactive effects of uv-b light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Frontiers in Plant Science, 8, 278, https://doi.org/10.3389/fpls.2017.00278.Escobar-BravoR.KlinkhamerP. G. L.LeissK. A. (2017). Interactive effects of uv-b light with abiotic factors on plant growth and chemistry, and their consequences for defense against arthropod herbivores. Frontiers in Plant Science, 8, 278, https://doi.org/10.3389/fpls.2017.00278.Search in Google Scholar
Fina, J., Casadevall, R., Abdelgawad, H., Prinsen, E., Markakis, M. N., Beemster, G. T. S., and Casati, P. (2017). UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiology, 174(2), 1110–1126, https://doi.org/10.1104/pp.17.00365.FinaJ.CasadevallR.AbdelgawadH.PrinsenE.MarkakisM. N.BeemsterG. T. S.CasatiP. (2017). UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiology, 174(2), 1110–1126, https://doi.org/10.1104/pp.17.00365.Search in Google Scholar
Flores, M., Amorós, A., and Escalona, V. H. (2023). Changes in agronomic, antioxidant compounds, and morphology parameters of green and red lettuces (Lactuca sativa L.) by successive harvests and UV-B supplementation. Horticulturae, 9(6), 677, https://doi.org/10.3390/horticulturae9060677.FloresM.AmorósA.EscalonaV. H. (2023). Changes in agronomic, antioxidant compounds, and morphology parameters of green and red lettuces (Lactuca sativa L.) by successive harvests and UV-B supplementation. Horticulturae, 9(6), 677, https://doi.org/10.3390/horticulturae9060677.Search in Google Scholar
Gao, W., Zheng, Y., Slusser, J. R., Heisler, G. M., Grant, R. H., Xu, J., and He, D. (2004). Effects of suplementary ultraviolet-B irradiance on maize yield and qualities: A field experiment. Photochemistry and Photobiology, 80(1), 127–131, https://doi.org/10.1111/j.1751-1097.2004.tb00060.x.GaoW.ZhengY.SlusserJ. R.HeislerG. M.GrantR. H.XuJ.HeD. (2004). Effects of suplementary ultraviolet-B irradiance on maize yield and qualities: A field experiment. Photochemistry and Photobiology, 80(1), 127–131, https://doi.org/10.1111/j.1751-1097.2004.tb00060.x.Search in Google Scholar
Herndon, J. M., Hoisington, R. D., and Whiteside, M. (2018). Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. Journal of Geography, Environment and Earth Science International, 14(2), 1–11, https://doi.org/10.9734/JGEESI/2018/40245.HerndonJ. M.HoisingtonR. D.WhitesideM. (2018). Deadly ultraviolet UV-C and UV-B penetration to Earth’s surface: Human and environmental health implications. Journal of Geography, Environment and Earth Science International, 14(2), 1–11, https://doi.org/10.9734/JGEESI/2018/40245.Search in Google Scholar
Hong, J., Xu, F., Chen, G., Huang, X., Wang, S., Du, L., and Ding, G. (2022). Evaluation of the effects of nitrogen, phosphorus, and potassium applications on the growth, yield, and quality of lettuce (Lactuca sativa L.). Agronomy, 12(10), 2477, https://doi.org/10.3390/agronomy12102477.HongJ.XuF.ChenG.HuangX.WangS.DuL.DingG. (2022). Evaluation of the effects of nitrogen, phosphorus, and potassium applications on the growth, yield, and quality of lettuce (Lactuca sativa L.). Agronomy, 12(10), 2477, https://doi.org/10.3390/agronomy12102477.Search in Google Scholar
Hoque, M. M., Ajwa, H., Othman, M., Smith, R., and Cahn, M. (2010). Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience, 45(10), 1539– 1544, https://doi.org/10.21273/hortsci.45.10.1539.HoqueM. M.AjwaH.OthmanM.SmithR.CahnM. (2010). Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience, 45(10), 1539– 1544, https://doi.org/10.21273/hortsci.45.10.1539.Search in Google Scholar
Hu, Z., Li, H., Chen, S., and Yang, Y. (2013). Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica, 51(1), 151–157, https://doi.org/10.1007/s11099-013-0007-4.HuZ.LiH.ChenS.YangY. (2013). Chlorophyll content and photosystem II efficiency in soybean exposed to supplemental ultraviolet-B radiation. Photosynthetica, 51(1), 151–157, https://doi.org/10.1007/s11099-013-0007-4.Search in Google Scholar
Jacobo-Velázquez, D. A., Moreira-Rodríguez, M., and Benavides, J. (2022). UVA and UVB radiation as innovative tools to biofortify horticultural crops with nutraceuticals. Horticulturae, 8(5), 387, https://doi.org/10.3390/horticulturae8050387.Jacobo-VelázquezD. A.Moreira-RodríguezM.BenavidesJ. (2022). UVA and UVB radiation as innovative tools to biofortify horticultural crops with nutraceuticals. Horticulturae, 8(5), 387, https://doi.org/10.3390/horticulturae8050387.Search in Google Scholar
Jadidi, M., Mumivand, H., Nia, A. E., Shayganfar, A., and Maggi, F. (2023). UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biology, 23, 555, https://doi.org/10.1186/s12870-023-04556-6.JadidiM.MumivandH.NiaA. E.ShayganfarA.MaggiF. (2023). UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biology, 23, 555, https://doi.org/10.1186/s12870-023-04556-6.Search in Google Scholar
Janisiewicz, W. J., Takeda, F., Glenn, D. M., Camp, M. J., and Jurick, W. M. (2016). Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology, 106(4), 386–394, https://doi.org/10.1094/phyto-09-15-0240-r.JanisiewiczW. J.TakedaF.GlennD. M.CampM. J.JurickW. M. (2016). Dark period following UV-C treatment enhances killing of Botrytis cinerea conidia and controls gray mold of strawberries. Phytopathology, 106(4), 386–394, https://doi.org/10.1094/phyto-09-15-0240-r.Search in Google Scholar
Jansen, M. A. K. (2002). Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiologia Plantarum, 116(3), 423–429, https://doi.org/10.1034/j.1399-3054.2002.1160319.x.JansenM. A. K. (2002). Ultraviolet-B radiation effects on plants: Induction of morphogenic responses. Physiologia Plantarum, 116(3), 423–429, https://doi.org/10.1034/j.1399-3054.2002.1160319.x.Search in Google Scholar
Kakani, V. G., Reddy, K. R., Zhao, D., and Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: A review. Agricultural and Forest Meteorology, 120(1–4), 191–218, https://doi.org/10.1016/j.agrformet.2003.08.015.KakaniV. G.ReddyK. R.ZhaoD.SailajaK. (2003). Field crop responses to ultraviolet-B radiation: A review. Agricultural and Forest Meteorology, 120(1–4), 191–218, https://doi.org/10.1016/j.agrformet.2003.08.015.Search in Google Scholar
Khan, S. R., Sharma, B., Chawla, P. A., and Bhatia, R. (2022). Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis. Food Analytical Methods, 15, 666–688, https://doi.org/10.1007/s12161-021-02148-4.KhanS. R.SharmaB.ChawlaP. A.BhatiaR. (2022). Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis. Food Analytical Methods, 15, 666–688, https://doi.org/10.1007/s12161-021-02148-4.Search in Google Scholar
Lee, M., Rivard, C., Pliakoni, E., Wang, W., and Rajashekar, C. B. (2021). Supplemental UV-A and UV-B affect the nutritional quality of lettuce and tomato: Health-promoting phytochemicals and essential nutrients. American Journal of Plant Sciences, 12(1), 104–126, https://doi.org/10.4236/ajps.2021.121007.LeeM.RivardC.PliakoniE.WangW.RajashekarC. B. (2021). Supplemental UV-A and UV-B affect the nutritional quality of lettuce and tomato: Health-promoting phytochemicals and essential nutrients. American Journal of Plant Sciences, 12(1), 104–126, https://doi.org/10.4236/ajps.2021.121007.Search in Google Scholar
León-Chan, R. G., López-Meyer, M., Osuna-Enciso, T., Sañudo-Barajas, J. A., Heredia, J. B., and León-Félix, J. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environmental and Experimental Botany, 139, 143–151, https://doi.org/10.1016/j.envexpbot.2017.05.006.León-ChanR. G.López-MeyerM.Osuna-EncisoT.Sañudo-BarajasJ. A.HerediaJ. B.León-FélixJ. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environmental and Experimental Botany, 139, 143–151, https://doi.org/10.1016/j.envexpbot.2017.05.006.Search in Google Scholar
Liang, Q., Strahan, S. E., and Fleming, E. L. (2017). Concerns for ozone recovery. Science, 358(6368), 1257–1258, https://doi.org/10.1126/science.aaq0145LiangQ.StrahanS. E.FlemingE. L. (2017). Concerns for ozone recovery. Science, 358(6368), 1257–1258, https://doi.org/10.1126/science.aaq0145Search in Google Scholar
Liu, B., Liu, X. B., Li, Y. S., and Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158–163, https://doi.org/10.1016/j.fcr.2013.08.006.LiuB.LiuX. B.LiY. S.HerbertS. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158–163, https://doi.org/10.1016/j.fcr.2013.08.006.Search in Google Scholar
Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M., Ribeiro, C., Dias, M. C., and Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777–784, https://doi.org/10.1016/j.scienta.2018.11.058.Mariz-PonteN.MartinsS.GonçalvesA.CorreiaC. M.RibeiroC.DiasM. C.SantosC. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246, 777–784, https://doi.org/10.1016/j.scienta.2018.11.058.Search in Google Scholar
Mathur, S., Bheemanahalli, R., Jumaa, S. H., Kakar, N., Reddy, V. R., Gao, W., and Reddy, K. R. (2024). Impact of ultraviolet-B radiation on early-season morpho-physiological traits of indica and japonica rice genotypes. Frontiers in Plant Science, 15, 1369397, https://doi.org/10.3389/fpls.2024.1369397.MathurS.BheemanahalliR.JumaaS. H.KakarN.ReddyV. R.GaoW.ReddyK. R. (2024). Impact of ultraviolet-B radiation on early-season morpho-physiological traits of indica and japonica rice genotypes. Frontiers in Plant Science, 15, 1369397, https://doi.org/10.3389/fpls.2024.1369397.Search in Google Scholar
Othman, A. J., Eliseeva, L. G., Ibragimova, N. A., Zelenkov, V. N., Latushkin, V. V., and Nicheva, D. V. (2021) Dataset on the effect of foliar application of different concentrations of silicon dioxide and organosilicon compounds on the growth and biochemical contents of oak leaf lettuce (Lactuca sativa var. crispa) grown in phytotron conditions. Data in Brief, 38, 107328, https://doi.org/10.1016/j.dib.2021.107328.OthmanA. J.EliseevaL. G.IbragimovaN. A.ZelenkovV. N.LatushkinV. V.NichevaD. V. (2021) Dataset on the effect of foliar application of different concentrations of silicon dioxide and organosilicon compounds on the growth and biochemical contents of oak leaf lettuce (Lactuca sativa var. crispa) grown in phytotron conditions. Data in Brief, 38, 107328, https://doi.org/10.1016/j.dib.2021.107328.Search in Google Scholar
Oyarburo, N. S., Machinandiarena, M. F., Feldman, M. L., Daleo, G. R., Andreu, A. B., and Olivieri, F. P. (2015). Potassium phosphite increases tolerance to UV-B in potato. Plant Physiology and Biochemistry, 88, 1–8, https://doi.org/10.1016/j.plaphy.2015.01.003.OyarburoN. S.MachinandiarenaM. F.FeldmanM. L.DaleoG. R.AndreuA. B.OlivieriF. P. (2015). Potassium phosphite increases tolerance to UV-B in potato. Plant Physiology and Biochemistry, 88, 1–8, https://doi.org/10.1016/j.plaphy.2015.01.003.Search in Google Scholar
Qi, W., Ma, J., Zhang, J., Gui, M., Li, J., and Zhang, L. (2020). Effects of low doses of UV-B radiation supplementation on tuber quality in purple potato (Solanum tuberosum L.). Plant Signaling & Behavior, 15(9), e1783490, https://doi.org/10.1080/15592324.2020.1783490.QiW.MaJ.ZhangJ.GuiM.LiJ.ZhangL. (2020). Effects of low doses of UV-B radiation supplementation on tuber quality in purple potato (Solanum tuberosum L.). Plant Signaling & Behavior, 15(9), e1783490, https://doi.org/10.1080/15592324.2020.1783490.Search in Google Scholar
Rademacher, W. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845–872, https://doi.org/10.1007/s00344-015-9541-6.RademacherW. (2015). Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 34, 845–872, https://doi.org/10.1007/s00344-015-9541-6.Search in Google Scholar
Roro, A. G., Dukker, S. A. F., Melby, T. I., Solhaug, K. A., Torre, S., and Olsen, J. E. (2017). UV-B-induced inhibition of stem elongation and leaf expansion in pea depends on modulation of gibberellin metabolism and intact gibberellin signalling. Journal of Plant Growth Regulation, 36, 680–690, https://doi.org/10.1007/s00344-017-9671-0.RoroA. G.DukkerS. A. F.MelbyT. I.SolhaugK. A.TorreS.OlsenJ. E. (2017). UV-B-induced inhibition of stem elongation and leaf expansion in pea depends on modulation of gibberellin metabolism and intact gibberellin signalling. Journal of Plant Growth Regulation, 36, 680–690, https://doi.org/10.1007/s00344-017-9671-0.Search in Google Scholar
SAS INSTITUTE INC. (2017). Using JMP® version 13.2.0 (pp. 1989–2019). Cary, NC, USA: SAS Institute Inc.SAS INSTITUTE INC. (2017). Using JMP® version 13.2.0 (pp. 1989–2019). Cary, NC, USA: SAS Institute Inc.Search in Google Scholar
Senapati, P. K., Kariali, E., Kisan, K., Sahu, B. B., Naik, A. K. D., Panda, D., Tripathy, S. K., Mohapatra, S., and Mohapatra, P. K. (2024). Comprehensive studies reveal physiological and genetic diversity in traditional rice cultivars for UV-B sensitivity. Scientific Reports, 14, 13137, https://doi.org/10.1038/s41598-024-64134-0.SenapatiP. K.KarialiE.KisanK.SahuB. B.NaikA. K. D.PandaD.TripathyS. K.MohapatraS.MohapatraP. K. (2024). Comprehensive studies reveal physiological and genetic diversity in traditional rice cultivars for UV-B sensitivity. Scientific Reports, 14, 13137, https://doi.org/10.1038/s41598-024-64134-0.Search in Google Scholar
Silveira Gomez, A. C., Rivera Marchant, L., and Escalona Contreras, V. H. (2023). The response of hydroponic baby lettuce to UV-B radiation exposure during the growing period. Advances in Horticultural Science, 37(3), 295–305, https://doi.org/10.36253/ahsc-13849.Silveira GomezA. C.Rivera MarchantL.Escalona ContrerasV. H. (2023). The response of hydroponic baby lettuce to UV-B radiation exposure during the growing period. Advances in Horticultural Science, 37(3), 295–305, https://doi.org/10.36253/ahsc-13849.Search in Google Scholar
Singh, P., and Choudhary, K. K. (2025). UV-B orchestration of growth, yield and grain quality traits highlights modifications of source-to-sink relationship in pearl millet cultivars. Physiologia Plantarum, 177(2), e70141, https://doi.org/10.1111/ppl.70141.SinghP.ChoudharyK. K. (2025). UV-B orchestration of growth, yield and grain quality traits highlights modifications of source-to-sink relationship in pearl millet cultivars. Physiologia Plantarum, 177(2), e70141, https://doi.org/10.1111/ppl.70141.Search in Google Scholar
Skowron, E., Trojak, M., and Pacak, I. (2024). Effects of UV-B and UV-C spectrum supplementation on the antioxidant properties and photosynthetic activity of lettuce cultivars. International Journal of Molecular Sciences, 25(17), 9298, https://doi.org/10.3390/ijms25179298.SkowronE.TrojakM.PacakI. (2024). Effects of UV-B and UV-C spectrum supplementation on the antioxidant properties and photosynthetic activity of lettuce cultivars. International Journal of Molecular Sciences, 25(17), 9298, https://doi.org/10.3390/ijms25179298.Search in Google Scholar
Son, S. W. (2023). Stratospheric ozone loss by very short-lived substances. Nature Climate Change, 13, 509– 510, https://doi.org/10.1038/s41558-023-01687-4.SonS. W. (2023). Stratospheric ozone loss by very short-lived substances. Nature Climate Change, 13, 509– 510, https://doi.org/10.1038/s41558-023-01687-4.Search in Google Scholar
Souri, M. K., and Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67–78, https://doi.org/10.1080/01904167.2018.1549671.SouriM. K.HatamianM. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67–78, https://doi.org/10.1080/01904167.2018.1549671.Search in Google Scholar
Topcu, Y., Dogan, A., Kasimoglu, Z., Sahin-Nadeem, H., Polat, E., and Erkan, M. (2015). The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry, 93, 56–65, https://doi.org/10.1016/j.plaphy.2015.02.016.TopcuY.DoganA.KasimogluZ.Sahin-NadeemH.PolatE.ErkanM. (2015). The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry, 93, 56–65, https://doi.org/10.1016/j.plaphy.2015.02.016.Search in Google Scholar
Topcu, Y., Dogan, A., Sahin-Nadeem, H., Polat, E., Kasimoglu, Z., and Erkan, M. (2018). Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination. Agriculture, Ecosystems and Environment, 259, 1–10, https://doi.org/10.1016/j.agee.2018.02.027.TopcuY.DoganA.Sahin-NadeemH.PolatE.KasimogluZ.ErkanM. (2018). Morphological and biochemical responses of broccoli florets to supplemental ultraviolet-B illumination. Agriculture, Ecosystems and Environment, 259, 1–10, https://doi.org/10.1016/j.agee.2018.02.027.Search in Google Scholar
Vandenbussche, F., Yu, N., Li, W., Vanhaelewyn, L., Hamshou, M., Van Der Straeten, D., and Smagghe, G. (2018). An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Science, 268, 54– 63, https://doi.org/10.1016/j.plantsci.2017.12.005.VandenbusscheF.YuN.LiW.VanhaelewynL.HamshouM.Van Der StraetenD.SmaggheG. (2018). An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Science, 268, 54– 63, https://doi.org/10.1016/j.plantsci.2017.12.005.Search in Google Scholar
Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., and Vandenbussche, F. (2020). Ultraviolet radiation from a plant perspective: The plant-microorganism context. Frontiers in Plant Science, 11, 597642, https://doi.org/10.3389/fpls.2020.597642.VanhaelewynL.Van Der StraetenD.De ConinckB.VandenbusscheF. (2020). Ultraviolet radiation from a plant perspective: The plant-microorganism context. Frontiers in Plant Science, 11, 597642, https://doi.org/10.3389/fpls.2020.597642.Search in Google Scholar
Wargent, J. J., Elfadly, E. M., Moore, J. P., and Paul, N. D. (2011). Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34(8), 1401–1413, https://doi.org/10.1111/j.1365-3040.2011.02342.x.WargentJ. J.ElfadlyE. M.MooreJ. P.PaulN. D. (2011). Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. Plant, Cell & Environment, 34(8), 1401–1413, https://doi.org/10.1111/j.1365-3040.2011.02342.x.Search in Google Scholar
Wu, X., Chen, B., Xiao, J., and Guo, H. (2023). Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period. Frontiers in Plant Science, 14, 1101172, https://doi.org/10.3389/fpls.2023.1101172.WuX.ChenB.XiaoJ.GuoH. (2023). Different doses of UV-B radiation affect pigmented potatoes’ growth and quality during the whole growth period. Frontiers in Plant Science, 14, 1101172, https://doi.org/10.3389/fpls.2023.1101172.Search in Google Scholar
Xie, F., Xia, Y., Feng, W., and Niu, Y. (2023). Increasing surface UV radiation in the tropics and northern mid-latitudes due to ozone depletion after 2010. Advances in Atmospheric Sciences, 40, 1833–1843, https://doi.org/10.1007/s00376-023-2354-9.XieF.XiaY.FengW.NiuY. (2023). Increasing surface UV radiation in the tropics and northern mid-latitudes due to ozone depletion after 2010. Advances in Atmospheric Sciences, 40, 1833–1843, https://doi.org/10.1007/s00376-023-2354-9.Search in Google Scholar
Yadav, A., Singh, D., Lingwan, M., Yadukrishnan, P., Masakapalli, S. K., and Datta, S. (2020). Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology, 62(9), 1270–1292, https://doi.org/10.1111/jipb.12932.YadavA.SinghD.LingwanM.YadukrishnanP.MasakapalliS. K.DattaS. (2020). Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology, 62(9), 1270–1292, https://doi.org/10.1111/jipb.12932.Search in Google Scholar
Yao, X., Chu, J., He, X., and Si, C. (2014). Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. Journal of Cereal Science, 60(1), 31–36, https://doi.org/10.1016/j.jcs.2014.01.012.YaoX.ChuJ.HeX.SiC. (2014). Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. Journal of Cereal Science, 60(1), 31–36, https://doi.org/10.1016/j.jcs.2014.01.012.Search in Google Scholar
Yoon, M. Y., Kim, M. Y., Shim, S., Kim, K. D., HA, J., Shin, J. H., Kang, S., and Lee, S. H. (2016). Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling. Frontiers in Plant Science, 7, 1917, https://doi.org/10.3389/fpls.2016.01917.YoonM. Y.KimM. Y.ShimS.KimK. D.HAJ.ShinJ. H.KangS.LeeS. H. (2016). Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling. Frontiers in Plant Science, 7, 1917, https://doi.org/10.3389/fpls.2016.01917.Search in Google Scholar
Yuan, L., Ming, Y., and Xunling, W. (1998). Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Research, 57(3), 253–263, https://doi.org/10.1016/S0378-4290(97)00138-X.YuanL.MingY.XunlingW. (1998). Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions. Field Crops Research, 57(3), 253–263, https://doi.org/10.1016/S0378-4290(97)00138-X.Search in Google Scholar
Zhang, R., Huang, G., Wang, L., Zhou, Q., and Huang, X. (2019). Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicology and Environmental Safety, 171, 683–690, https://doi.org/10.1016/j.ecoenv.2019.01.035.ZhangR.HuangG.WangL.ZhouQ.HuangX. (2019). Effects of elevated ultraviolet-B radiation on root growth and chemical signaling molecules in plants. Ecotoxicology and Environmental Safety, 171, 683–690, https://doi.org/10.1016/j.ecoenv.2019.01.035.Search in Google Scholar
Zhang, K., Li, W., Ju, Y., Wang, X., Sun, X., Fang, Y., and Chen, K. (2021). Transcriptomic and metabolomic basis of short- and long-term post-harvest UV-C application in regulating grape berry quality development. Foods, 10(3), 625, https://doi.org/10.3390/foods10030625.ZhangK.LiW.JuY.WangX.SunX.FangY.ChenK. (2021). Transcriptomic and metabolomic basis of short- and long-term post-harvest UV-C application in regulating grape berry quality development. Foods, 10(3), 625, https://doi.org/10.3390/foods10030625.Search in Google Scholar