Adrian, A. M., Norwood, S. H. & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture 48(3), 256–271. DOI: 10.1016/j.compag.2005.04.004.Search in Google Scholar
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Process 50(2), 179–211. DOI: 10.1016/0749-5978(91)90020-T.Search in Google Scholar
Aubert, B. A., Schroeder, A. & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support System 54(1), 510–520. DOI: 10.1016/j.dss.2012.07.002.Search in Google Scholar
Bai, A., Kovách, I., Czibere, I., Megyesi, B. & Balogh, P. (2022). Examining the Adoption of Drones and Categorisation of Precision Elements among Hungarian Precision Farmers Using a Trans-Theoretical Model Drones 6(8), Article ID. DOI: 10.3390/drones6080200.Search in Google Scholar
Balogh, P., Bujdos, Á., Czibere, I., Fodor, L., Gabnai, Z., Kovách, I., Nagy, J. & Bai, A. (2020). Main Motivational Factors of Farmers Adopting Precision Farming in Hungary. Agronomy, 10(4), Article ID 610. DOI: 10.3390/agronomy10040610.Search in Google Scholar
Balogh, P., Bai, A., Czibere, I., Kovách, I., Fodor, L., Bujdos, Á., Sulyok, D., Gabnai. Z. & Birkner, Z. (2021). Economic and Social Barriers of Precision Farming in Hungary. Agronomy 11(6), Article ID 112. DOI: 10.3390/agronomy11061112.Search in Google Scholar
Barnes, A., De Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T. & Gómez-Barbero, M. (2019). Influencing factors and incentives on the intention to adopt precision agricultural technologies within arable farming systems. Environmental Science and Policy 93, 66–74. DOI: 10.1016/j.envsci.2018.12.014.Search in Google Scholar
Charatsari, C., Lioutas, E. D. & Koutsouris, A. (2017). Farmers’ motivational orientation toward participation in competence development projects: A self-determination theory perspective. The Journal of Agricultural Education and Extension, 23(2), 105–120. DOI: 10.1080/1389224X.2016.1261717.Search in Google Scholar
Chabot, D., Dillon, C., Shemrock, A., Weissflog, N. & Sager, E. P. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. ISPRS International Journal of Geo-Information 7(8), Article ID 294. DOI: 10.3390/ijgi7080294.Search in Google Scholar
Csurgó, B., Kovách, I. & Megyesi, B. (2018). After a long March: the results of two decades of rural restructuring in Hungary. Eastern European Countryside 24(1), 81–109. DOI: 10.2478/eec-2018-0005.Search in Google Scholar
Drucker, P. (1985). Innovation and Entrepreneurship. New York: Harper and Row Publishers.Search in Google Scholar
Fountas, S., Pedersen, S. M. & Blackmore, S. (2005). ICT in Precision Agriculture – Diffusion of technology. In Gelb, E. & Offer, A., eds., ICT in Agriculture: Perspectives in Technological Innovation. Jerusalem: The Hebrew University.Search in Google Scholar
Gaál, M., Humenyik, N., Illés, I. & Kiss, A.(2020). A precíziós szántóföldi növénytermesztés helyzete és ökonómiai vizsgálata. Budapest: NAIK Agrárgazdasági Kutatóintézet.Search in Google Scholar
Griffin, T. W., Miller, N. J., Bergtold, J., Shanoyan, A., Sharda, A. & Ciampitti, I. A. (2017). Farm’s sequence of adoption of information-intensive precision agricultural technology. Applied Engineering in Agriculture. 33(4), 521–527. DOI: 10.13031/aea.12228.Search in Google Scholar
Hansson, H. & Kokko, S. (2018). Farmers' mental models of change and implications for farm renewal – A case of restoration of a wetland in Sweden. Journal of Rural Studies 60, 141–151. DOI: 10.1016/j.jrurstud.2018.04.006.Search in Google Scholar
Kemény, G., Lámfalusi, I. & Molnár, A. (2017). A precíziós szántóföldi növénytermesztés összehasonlító vizsgálata. Budapest: Agrárgazdasági Kutató Intézet. DOI: 10.7896/ak1703.Search in Google Scholar
Kovách, I., Megyesi, B., Bai, A. & Balogh, P. (2022). Sustainability and agricultural regeneration in the Hungarian agriculture. Sustainability, 14(2), Article ID 969. DOI: 10.3390/su14020969.Search in Google Scholar
Lencsés, E. & Mészáros, K. (2020). Business model innovation with precision farming technology form farmers point of view. Hungarian Agricultural Engineering, 38, 79–84. DOI: 10.17676/HAE.2020.38.79.Search in Google Scholar
Li, W., Clark, B., Taylor, J. A., Kendall, H., Jones, G., Li, Z., Jin, S., Zhao, C., Yang, G., Shuai, C., Cheng, X., Chen, J., Yang, H. & Frewer, L. J. (2020). A hybrid modelling approach to understanding adoption of precision agriculture technologies in Chinese cropping systems. Computers and Electronics in Agriculture, 172, Article ID: 105305. DOI: 10.1016/j.compag.2020.105305.Search in Google Scholar
Lynne, G. D., Franklin Casey, C., Hodges, A., Rahmani, M. (1995). Conservation technology adoption decisions and the theory of planned behavior. Journal of Economic Psychology 16(4), 581–598. DOI: 10.1016/0167-4870(95)00031-6.Search in Google Scholar
Milics, G., Smuk, N., Virág, I. & Neményi, M. (2012). Precision agriculture – technical development for a sustainable agriculture. In: Neményi, M. & Heil, B., eds., The Impact of Urbanization, Industrial and Agricultural Technologies on the Natural Environment: International Scientific Conference on Sustainable Development and Ecological Footprint. (pp. 231–240). Budapest, Nemzeti Tankönyvkiadó; Nyugat-magyarországi Egyetem. ISBN: 978-963-19-7352-5.Search in Google Scholar
Milics, G. (2019). Application of UAVs in Precision Agriculture. In: Palocz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L. & Taligás, T, eds., International Climate Protection (pp. 93–97). Cham: Springer International Publishing.Search in Google Scholar
Milics, G., Igor, M., Magyar, F. & Varga, P. M. (2022). Data-based agriculture in the V4 countries – sustainability, efficiency and safety. Scientia et Securitas 2(4), 491–503. DOI: 10.1556/112.2021.00072.Search in Google Scholar
Morgan, M. & Ess, D. (1997). The Precision-Farming Guide for Agriculturists: The Nuts and Bolts Guide to “Getting up to Speed” Fast and Effectively with This Exciting New Management. Moline, IL: John Deere.Search in Google Scholar
Oláh, J. & Popp, J. (2018). The outlook for precision farming in Hungary. Network Intelligence Studies 6(12), 91–99.Search in Google Scholar
Pino, G., Toma, P., Rizzo, C., Miglietta, P., Peluso, A., Guido, G. (2017). Determinants of farmers’ intention to adopt water saving measures: evidence from Italy. Sustainability 9(1), Article ID 77. DOI: 10.3390/su9010077.Search in Google Scholar
Popp, J., Erdei, E. & Oláh, J. (2018). A precíziós gazdálkodás kilátásai Magyarországon. International Journal of Engineering and Management Sciences, 3(1), 133–147. DOI: 10.21791/IJEMS.2018.1.15.Search in Google Scholar
Regan, A. (2019). ‘Smart farming’ in Ireland: A risk perception study with key governance actors. Wageningen Journal of Life Sciences, 90–91, Article ID 100292. DOI: 10.1016/j.njas.2019.02.003.Search in Google Scholar
Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T. & Dicks, L.V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165–174. DOI: 10.1016/j.agsy.2016.09.009.Search in Google Scholar
Shaikh, T. A., Rasool, T. & Lone, F. R. (2022). Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198(C), Article ID: 107119. DOI: 10.1016/j.compag.2022.107119.Search in Google Scholar
Stræte, E. P., Vik, J., Fuglestad, E. M., Gjefsen, M. D., Melås, A. M. & Søraa, R. A. (2022). Critical support for different stages of innovation in agriculture: What, when, how? Agricultural Systems, 203, Article ID: 103526. DOI: 10.1016/j.agsy.2022.103526.Search in Google Scholar
Takácsné György, K., Lámfalusi, I., Molnár, A., Sulyok, D., Gaál, M., Keményné Horváth, Zs., Domán, Cs., Illés, I., Kiss, A., Péter, K. & Kemény, G. (2018). Precision agriculture in Hungary: assessment of perceptions and accounting records of FADN arable farms. Studies in Agricultural Economics, 120(1), 47–54. DOI: 10.7896/j.1717.Search in Google Scholar
Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. DOI: 10.1287/mnsc.46.2.186.Search in Google Scholar
Hadászi, L. (2018). A precíziós eszközök kompatibilitása nélkül elmarad az áttörés. Interjú. Retrieved from https://www.magro.hu/agrarhirek/a-precizios-eszkozok-kompatibilitasa-nelkul-elmarad-azattores/. (Accessed: 2022. 12. 31.)Search in Google Scholar
Jóri, J. I. (2019). A precíziós gazdálkodás gépesítési kérdései [unpublished prezentation]. Retrieved from https://mgi.naik.hu/system/files/uploads/2019-01/dr_jori_j_istvan_a_precizios_gepesitesi_kerdesei.pdf. (Accessed: 2022.12.31.)Search in Google Scholar
Központi Statisztikai Hivatal (KSH) (2021). Agrárcenzus 2020. Előzetes adatok.https://www.ksh.hu/docs/hun/xftp/ac2020/elozetes_adatok/index.html#/cover (2022.12.31).Search in Google Scholar
Nemzeti Agrárkamara (2019). Egyre többen végeznek precíziós gazdálkodást. Retrieved from: http://nak.hu/en/agazati-hirek/mezogazdasag/146-novenytermesztes/99560-egyre-tobbenvegeznek-precizios-gazdalkodast. (Accessed: 2022.12.31.)Search in Google Scholar