Open Access

Machine Learning-Driven Prediction of CRISPR-Cas9 Off-Target Effects and Mechanistic Insights

,  and   
Oct 17, 2024

Cite
Download Cover

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9 [Internet]. 2010 Sep [cited 2024 May 15];11(9):636–46. Available from: https://www.nature.com/articles/nrg2842 Search in Google Scholar

Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods [Internet]. 2013 Oct [cited 2024 May 15];10(10):973–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23892895/ Search in Google Scholar

Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017 548:7668 [Internet]. 2017 Aug 2 [cited 2024 May 15];548(7668):413–9. Available from: https://www.nature.com/articles/nature23305 Search in Google Scholar

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol [Internet]. 2014 [cited 2024 May 15];32(4):347–50. Available from: https://pubmed.ncbi.nlm.nih.gov/24584096/ Search in Google Scholar

Musunuru K. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review. JAMA Cardiol [Internet]. 2017 Aug 1 [cited 2024 May 15];2(8):914–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28614576/ Search in Google Scholar

Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol [Internet]. 2011 Jun [cited 2024 May 15];14(3):321–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21531607/ Search in Google Scholar

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv [Internet]. 2015 Jan 1 [cited 2024 May 15];33(1):41–52. Available from: https://pubmed.ncbi.nlm.nih.gov/25536441/ Search in Google Scholar

Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol [Internet]. 2014 [cited 2024 May 15];12(5):317–26. Available from: https://pubmed.ncbi.nlm.nih.gov/24704746/ Search in Google Scholar

Georges F, Ray H. Genome editing of crops: A renewed opportunity for food security. GM Crops Food [Internet]. 2017 Jan 2 [cited 2024 May 15];8(1):1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/28075688/ Search in Google Scholar

Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi* P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. Iran Biomed J [Internet]. 2023 Sep 1 [cited 2024 Aug 23];27(5):219. Available from: /pmc/articles/PMC10707817/ Search in Google Scholar

Ferreira P, Choupina AB. CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Mol Biol Rep [Internet]. 2022 Jul 1 [cited 2024 May 15];49(7):7079. Available from: /pmc/articles/PMC9206401/ Search in Google Scholar

Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, et al. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Front Plant Sci [Internet]. 2018 May 8 [cited 2024 May 15];9. Available from: https://pubmed.ncbi.nlm.nih.gov/29868073/ Search in Google Scholar

Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J [Internet]. 2016 Dec 1 [cited 2024 May 15];14(12):2203. Available from: /pmc/articles/PMC5103219/ Search in Google Scholar

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res [Internet]. 2014 Jan [cited 2024 May 15];24(1):132. Available from: /pmc/articles/PMC3875854/ Search in Google Scholar

Xu X, Duan D, Chen SJ. CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Scientific Reports 2017 7:1 [Internet]. 2017 Mar 10 [cited 2024 May 15];7(1):1–9. Available from: https://www.nature.com/articles/s41598-017-00180-1 Search in Google Scholar

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol [Internet]. 2016 Jul 5 [cited 2024 May 15];17(1):1–12. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1012-2 Search in Google Scholar

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods [Internet]. 2014 [cited 2024 May 15];11(8):783. Available from: /pmc/articles/PMC4486245/ Search in Google Scholar

Lin J, Wong KC. Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics [Internet]. 2018 Sep 1 [cited 2024 May 15];34(17):i656–63. Available from: https://pubmed.ncbi.nlm.nih.gov/30423072/ Search in Google Scholar

Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol [Internet]. 2017 Oct 1 [cited 2024 May 15];13(10):e1005807. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005807 Search in Google Scholar

Bhardwaj A, Tomar P, Nain V. Identification and evaluation of machine learning classification algorithm to predict the efficacy of gRNA in CRISPR/Cas9 genome editing system using WEKA. AIP Conf Proc [Internet]. 2023 Dec 22 [cited 2024 May 15];2938(1). Available from: https://www.researchgate.net/publication/376775027_Identification_and_evaluation_of_machine_learning_classification_algorithm_to_predict_the_efficacy_of_gRNA_in_CRISPRCas9_genome_editing_system_using_WEKA Search in Google Scholar

Niu M, Lin Y, Zou Q. sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Mol Biol [Internet]. 2021 Mar 1 [cited 2024 May 15];105(4–5):483–95. Available from: https://link.springer.com/article/10.1007/s11103-020-01102-y Search in Google Scholar

Hesami M, Yoosefzadeh Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules [Internet]. 2021 [cited 2024 May 15];26(7). Available from: https://pubmed.ncbi.nlm.nih.gov/33916717/ Search in Google Scholar

Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Brief Bioinform [Internet]. 2023 May 1 [cited 2024 Aug 23];24(3). Available from: /pmc/articles/PMC10199778/ Search in Google Scholar

Muhammad Rafid AH, Toufikuzzaman M, Rahman MS, Rahman MS. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning. BMC Bioinformatics [Internet]. 2020 Jun 1 [cited 2024 Aug 23];21(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32487025/ Search in Google Scholar

Khan AA, Chaudhari O, Chandra R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst Appl. 2024 Jun 15;244:122778. Search in Google Scholar

Chen Y, Wang X. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection. Bioinformatics [Internet]. 2022 Nov 30 [cited 2024 Aug 23];38(23):5175–81. Available from: https://dx.doi.org/10.1093/bioinformatics/btac681 Search in Google Scholar

Yaish O, Orenstein Y. Generating, modeling and evaluating a large-scale set of CRISPR/Cas9 off-target sites with bulges. Nucleic Acids Res [Internet]. 2024 Jul 7 [cited 2024 Aug 23];52(12):6777. Available from: /pmc/articles/PMC11229338/ Search in Google Scholar

Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. Journal of Machine Learning Research [Internet]. 2011 [cited 2024 Aug 23];12:2825–30. Available from: http://scikit-learn.sourceforge.net. Search in Google Scholar

Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin E V., Backofen R. CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Res [Internet]. 2021 Feb 26 [cited 2024 Aug 23];49(4):e20–e20. Available from: https://dx.doi.org/10.1093/nar/gkaa1158 Search in Google Scholar

Lundberg SM, Allen PG, Lee SI. A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst [Internet]. 2017 [cited 2024 Aug 23];30. Available from: https://github.com/slundberg/shap Search in Google Scholar

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature [Internet]. 2016 Jan 28 [cited 2024 May 15];529(7587):490–5. Available from: https://pubmed.ncbi.nlm.nih.gov/26735016/ Search in Google Scholar

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar V V., Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol [Internet]. 2015 [cited 2024 May 15];33(2):187–98. Available from: https://pubmed.ncbi.nlm.nih.gov/25513782/ Search in Google Scholar

Zhang S, Zhang C, Yang Q. Data preparation for data mining. Applied Artificial Intelligence. 2003 May 1;17(5–6):375–81. Search in Google Scholar

Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine learning in Python. jmlr.orgF Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondelthe Journal of machine Learning research, 2011•jmlr.org [Internet]. 2011 [cited 2024 May 15];12:2825–30. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/ Search in Google Scholar

Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics [Internet]. 2014 May 15 [cited 2024 May 15];30(10):1473–5. Available from: https://pubmed.ncbi.nlm.nih.gov/24463181/ Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Genetics, Biotechnology, Bioinformatics, Life Sciences, other