Accesso libero

Machine Learning-Driven Prediction of CRISPR-Cas9 Off-Target Effects and Mechanistic Insights

,  e   
17 ott 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9 [Internet]. 2010 Sep [cited 2024 May 15];11(9):636–46. Available from: https://www.nature.com/articles/nrg2842 Search in Google Scholar

Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods [Internet]. 2013 Oct [cited 2024 May 15];10(10):973–6. Available from: https://pubmed.ncbi.nlm.nih.gov/23892895/ Search in Google Scholar

Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017 548:7668 [Internet]. 2017 Aug 2 [cited 2024 May 15];548(7668):413–9. Available from: https://www.nature.com/articles/nature23305 Search in Google Scholar

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol [Internet]. 2014 [cited 2024 May 15];32(4):347–50. Available from: https://pubmed.ncbi.nlm.nih.gov/24584096/ Search in Google Scholar

Musunuru K. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review. JAMA Cardiol [Internet]. 2017 Aug 1 [cited 2024 May 15];2(8):914–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28614576/ Search in Google Scholar

Terns MP, Terns RM. CRISPR-based adaptive immune systems. Curr Opin Microbiol [Internet]. 2011 Jun [cited 2024 May 15];14(3):321–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21531607/ Search in Google Scholar

Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv [Internet]. 2015 Jan 1 [cited 2024 May 15];33(1):41–52. Available from: https://pubmed.ncbi.nlm.nih.gov/25536441/ Search in Google Scholar

Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol [Internet]. 2014 [cited 2024 May 15];12(5):317–26. Available from: https://pubmed.ncbi.nlm.nih.gov/24704746/ Search in Google Scholar

Georges F, Ray H. Genome editing of crops: A renewed opportunity for food security. GM Crops Food [Internet]. 2017 Jan 2 [cited 2024 May 15];8(1):1–12. Available from: https://pubmed.ncbi.nlm.nih.gov/28075688/ Search in Google Scholar

Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi* P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. Iran Biomed J [Internet]. 2023 Sep 1 [cited 2024 Aug 23];27(5):219. Available from: /pmc/articles/PMC10707817/ Search in Google Scholar

Ferreira P, Choupina AB. CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Mol Biol Rep [Internet]. 2022 Jul 1 [cited 2024 May 15];49(7):7079. Available from: /pmc/articles/PMC9206401/ Search in Google Scholar

Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, et al. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. Front Plant Sci [Internet]. 2018 May 8 [cited 2024 May 15];9. Available from: https://pubmed.ncbi.nlm.nih.gov/29868073/ Search in Google Scholar

Bortesi L, Zhu C, Zischewski J, Perez L, Bassié L, Nadi R, et al. Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J [Internet]. 2016 Dec 1 [cited 2024 May 15];14(12):2203. Available from: /pmc/articles/PMC5103219/ Search in Google Scholar

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res [Internet]. 2014 Jan [cited 2024 May 15];24(1):132. Available from: /pmc/articles/PMC3875854/ Search in Google Scholar

Xu X, Duan D, Chen SJ. CRISPR-Cas9 cleavage efficiency correlates strongly with target-sgRNA folding stability: from physical mechanism to off-target assessment. Scientific Reports 2017 7:1 [Internet]. 2017 Mar 10 [cited 2024 May 15];7(1):1–9. Available from: https://www.nature.com/articles/s41598-017-00180-1 Search in Google Scholar

Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol [Internet]. 2016 Jul 5 [cited 2024 May 15];17(1):1–12. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1012-2 Search in Google Scholar

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods [Internet]. 2014 [cited 2024 May 15];11(8):783. Available from: /pmc/articles/PMC4486245/ Search in Google Scholar

Lin J, Wong KC. Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Bioinformatics [Internet]. 2018 Sep 1 [cited 2024 May 15];34(17):i656–63. Available from: https://pubmed.ncbi.nlm.nih.gov/30423072/ Search in Google Scholar

Abadi S, Yan WX, Amar D, Mayrose I. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol [Internet]. 2017 Oct 1 [cited 2024 May 15];13(10):e1005807. Available from: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005807 Search in Google Scholar

Bhardwaj A, Tomar P, Nain V. Identification and evaluation of machine learning classification algorithm to predict the efficacy of gRNA in CRISPR/Cas9 genome editing system using WEKA. AIP Conf Proc [Internet]. 2023 Dec 22 [cited 2024 May 15];2938(1). Available from: https://www.researchgate.net/publication/376775027_Identification_and_evaluation_of_machine_learning_classification_algorithm_to_predict_the_efficacy_of_gRNA_in_CRISPRCas9_genome_editing_system_using_WEKA Search in Google Scholar

Niu M, Lin Y, Zou Q. sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Mol Biol [Internet]. 2021 Mar 1 [cited 2024 May 15];105(4–5):483–95. Available from: https://link.springer.com/article/10.1007/s11103-020-01102-y Search in Google Scholar

Hesami M, Yoosefzadeh Najafabadi M, Adamek K, Torkamaneh D, Jones AMP. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas. Molecules [Internet]. 2021 [cited 2024 May 15];26(7). Available from: https://pubmed.ncbi.nlm.nih.gov/33916717/ Search in Google Scholar

Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Brief Bioinform [Internet]. 2023 May 1 [cited 2024 Aug 23];24(3). Available from: /pmc/articles/PMC10199778/ Search in Google Scholar

Muhammad Rafid AH, Toufikuzzaman M, Rahman MS, Rahman MS. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning. BMC Bioinformatics [Internet]. 2020 Jun 1 [cited 2024 Aug 23];21(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32487025/ Search in Google Scholar

Khan AA, Chaudhari O, Chandra R. A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Syst Appl. 2024 Jun 15;244:122778. Search in Google Scholar

Chen Y, Wang X. Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection. Bioinformatics [Internet]. 2022 Nov 30 [cited 2024 Aug 23];38(23):5175–81. Available from: https://dx.doi.org/10.1093/bioinformatics/btac681 Search in Google Scholar

Yaish O, Orenstein Y. Generating, modeling and evaluating a large-scale set of CRISPR/Cas9 off-target sites with bulges. Nucleic Acids Res [Internet]. 2024 Jul 7 [cited 2024 Aug 23];52(12):6777. Available from: /pmc/articles/PMC11229338/ Search in Google Scholar

Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot. Journal of Machine Learning Research [Internet]. 2011 [cited 2024 Aug 23];12:2825–30. Available from: http://scikit-learn.sourceforge.net. Search in Google Scholar

Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin E V., Backofen R. CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Res [Internet]. 2021 Feb 26 [cited 2024 Aug 23];49(4):e20–e20. Available from: https://dx.doi.org/10.1093/nar/gkaa1158 Search in Google Scholar

Lundberg SM, Allen PG, Lee SI. A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst [Internet]. 2017 [cited 2024 Aug 23];30. Available from: https://github.com/slundberg/shap Search in Google Scholar

Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature [Internet]. 2016 Jan 28 [cited 2024 May 15];529(7587):490–5. Available from: https://pubmed.ncbi.nlm.nih.gov/26735016/ Search in Google Scholar

Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar V V., Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol [Internet]. 2015 [cited 2024 May 15];33(2):187–98. Available from: https://pubmed.ncbi.nlm.nih.gov/25513782/ Search in Google Scholar

Zhang S, Zhang C, Yang Q. Data preparation for data mining. Applied Artificial Intelligence. 2003 May 1;17(5–6):375–81. Search in Google Scholar

Pedregosa FABIANPEDREGOSA F, Michel V, Grisel OLIVIERGRISEL O, Blondel M, Prettenhofer P, Weiss R, et al. Scikit-learn: Machine learning in Python. jmlr.orgF Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondelthe Journal of machine Learning research, 2011•jmlr.org [Internet]. 2011 [cited 2024 May 15];12:2825–30. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https:/ Search in Google Scholar

Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics [Internet]. 2014 May 15 [cited 2024 May 15];30(10):1473–5. Available from: https://pubmed.ncbi.nlm.nih.gov/24463181/ Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Genetica, Biotecnologia, Bioinformatica, Scienze della vita, altro