The effects of Selenium phytotoxicity on two wheat (Triticum aestivum) cultivars differing in Se tolerance and the role of antioxidant enzymes in the tolerance mechanism
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Pilon-Smits EAH, Quinn CF. Selenium metabolism in plants. In: Hell R, Mendel R, editors Cell biology of metal and nutrients, Berlin: Springer 2010; pp 225-241. https://doi:10.1007/978-3-642-10613-2_10Search in Google Scholar
Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. Plants (Basel) 2020; 9(12):1711. https://doi:10.3390/plants9121711Search in Google Scholar
Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LR, Thannhauser TW, Li L. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol Plant 2016; 158(1):80-91. https://doi:10.1111/ppl.12465Search in Google Scholar
Guerrero B, Lugany M, Palacios O, Valient M. Dual effects of different selenium species on wheat. Plant Physiol Biochem 2014; 83:300-307. https://doi:10.1016/j.plaphy.2014.08.009Search in Google Scholar
Hu W, Zhao C, Hu H, Yin S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021; 13(5): 1739. https://doi:10.3390/nu13051739Search in Google Scholar
Galic L, Vinkovic T, Ravnjak B, Loncaric Z. Agronomic biofortification of significant cereal crops with selenium-a review. Agronomy-Basel 2021; 1:1015. https://doi:10.3390/agronomy11051015Search in Google Scholar
Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. Front. Plant Sci 2021; 12:748523. https://doi:10.3389/fpls.2021.748523Search in Google Scholar
Ramkissoon C, Degryse F, da Silva RC, Baird R, Young SD, Bailey EH, Mclaughlin MJ. Improving the efficacy of selenium fertilizers for wheat biofortification. Scientific Reports 2019; 9:19520. https://doi.org/10.1038/s41598-019-55914-0Search in Google Scholar
Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 2005; 86(3):373-89. https://doi:10.1007/s11120-005-5222-9Search in Google Scholar
Van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 2013; 112(6):965-972. https://doi:10.1093/aob/mct163Search in Google Scholar
Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L. Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds. Plant Physiol 2009; 151(2):528-540. https://doi:10.1104/pp.109.142521Search in Google Scholar
Balakhnina TI, Nadezhkina ES. Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 2017; 64:215-223. https://doi.org/10.1134/S1021443717010022Search in Google Scholar
Kolbert Z, Lehotai N, Molnár Á, Feigl G. “The roots” of selenium toxicity: A new concept. Plant Signaling & Behavior 2016; 11:10, e1241935. https://doi:10.1080/15592324.2016.1241935Search in Google Scholar
Inskeep WP, Bloom PR. Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone. Plant Physiol 1985; 77(2):483-485. https://doi:10.1104/pp.77.2.483Search in Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3Search in Google Scholar
Lyons GH, Stangoulis JCR, Graham RD. Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 2005; 270:179–188. https://doi.org/10.1007/s11104-004-1390-1Search in Google Scholar
Molnárová M, Fargasová A. Se (IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L. Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L. Brassica napus L.). J Hazard Mater 2009; 172:854-861. https://doi.org/10.1016/j.jhazmat.2009.07.096Search in Google Scholar
Padmaja K, Prasad DKK, Prasad ARK. Effect of selenium on chlorophyll biosynthesis in mung bean seedling. Phytochem 1989; 28:3321-3324. https://doi.org/10.1016/0031-9422(89)80339-5Search in Google Scholar
Grace SG, Logan BA. Energy dissipation and radical scavenging by the plant phenyl propanoid pathway. Phil Trans R Soc B 2000; 355(1402):1499-1510. https://doi:10.1098/rstb.2000.0710Search in Google Scholar
Hartikainen H, Xue T, Piironen V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000; 225:193–200. https://doi.org/10.1023/A:1026512921026Search in Google Scholar
Łabanowska M, Filek M, Kościelniak J, Kurdziel M, Kuliś E, Hartikainen H. The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 2012; 169(3):275-284. https://doi.org/10.1016/j.jplph.2011.10.012Search in Google Scholar
Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15(2):89-97. https://doi:10.1016/j.tplants.2009.11.009Search in Google Scholar
Siripornadulsil S, Traina S, Verma DP, Sayre RT. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 2002; 14(11):2837-2847. https://doi:10.1105/tpc.004853Search in Google Scholar
Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H. Exogenous proline application reduces phytotoxic effects of selenium by minimizing oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res 2011; 140(3):354-367. https://doi:10.1007/s12011-010-8699-9Search in Google Scholar
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9Search in Google Scholar
Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveir JAG. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 2004; 163:563-571. https://doi.org/10.1111/j.1469-8137.2004.01139.xSearch in Google Scholar
Freeman JL, Tamaoki M, Stushnoff C, Quinn C, Cappa J, Devonshire J, Fakra S, Marcus M, McGrath S, Hoewyk DV, Pilon-Smits EAH. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 2010; 153(4):1630-1652. https://doi:10.1104/pp.110.156570Search in Google Scholar
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8(1):2789. https://doi:10.1038/s41598-018-21268-2Search in Google Scholar
Sharma S, Kaur N, Kaur S, Nayyar H. Ascorbic Acid Reduces the Phytotoxic Effects of Selenium on Rice (Oryza Sativa L.) by Up-Regulation of Antioxidative and Metal-Tolerance Mechanisms. J Plant Physiol Pathol 2014; 2:3. https://doi:10.4172/2329-955X.1000128Search in Google Scholar
Djanaguiraman M, Devi DD, Arun K, Shanker J, Sheeba A, Bangarusamy U. Impact of selenium spray on monocarpic senescence of soybean (Glycine Max L.). J Food Agric Environ 2004; 2(2):44-47. https://doi.org/10.1234/4.2004.162Search in Google Scholar
Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J. Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol 2009; 151(2):768-81. https://doi:10.1104/pp.109.144808Search in Google Scholar
Akbulut M, Çakır S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 2010; 48(2-3):160-166. https://doi.org/10.1016/j.plaphy.2009.11.001Search in Google Scholar
SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.Search in Google Scholar
Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C. Proline inhibits aggregation during protein refolding. Protein Sci 2000; 9:344-352. https://doi:10.1110/ps.9.2.344Search in Google Scholar
Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 2009; 47(11-12):1069-1074. https://doi:10.1016/j.plaphy.2009.08.003Search in Google Scholar
Yilmaz S, Temizgül R, Yürürdurmaz C, Kaplan M. Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro 2020; 32(1): 31-38. https://revistas.uclave.org/index.php/bioagro/article/view/2684Search in Google Scholar
Yilmaz SH, Kaplan M, Temizgul R, Yilmaz S. Antioxidant enzyme response of sorghum plant upon exposure to Aluminum, Chromium and Lead heavy metals. Turk J Biochem 2017; 42(4): 503-512. https://doi.org/10.1515/tjb-2016-0112Search in Google Scholar