Accesso libero

The effects of Selenium phytotoxicity on two wheat (Triticum aestivum) cultivars differing in Se tolerance and the role of antioxidant enzymes in the tolerance mechanism

,  e   
17 ott 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Pilon-Smits EAH, Quinn CF. Selenium metabolism in plants. In: Hell R, Mendel R, editors Cell biology of metal and nutrients, Berlin: Springer 2010; pp 225-241. https://doi:10.1007/978-3-642-10613-2_10 Search in Google Scholar

Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Nahar K, Fujita M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. Plants (Basel) 2020; 9(12):1711. https://doi:10.3390/plants9121711 Search in Google Scholar

Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LR, Thannhauser TW, Li L. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol Plant 2016; 158(1):80-91. https://doi:10.1111/ppl.12465 Search in Google Scholar

Guerrero B, Lugany M, Palacios O, Valient M. Dual effects of different selenium species on wheat. Plant Physiol Biochem 2014; 83:300-307. https://doi:10.1016/j.plaphy.2014.08.009 Search in Google Scholar

Hu W, Zhao C, Hu H, Yin S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021; 13(5): 1739. https://doi:10.3390/nu13051739 Search in Google Scholar

Galic L, Vinkovic T, Ravnjak B, Loncaric Z. Agronomic biofortification of significant cereal crops with selenium-a review. Agronomy-Basel 2021; 1:1015. https://doi:10.3390/agronomy11051015 Search in Google Scholar

Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z. Selenium Biofortification Modulates Plant Growth, Microelement and Heavy Metal Concentrations, Selenium Uptake, and Accumulation in Black-Grained Wheat. Front. Plant Sci 2021; 12:748523. https://doi:10.3389/fpls.2021.748523 Search in Google Scholar

Ramkissoon C, Degryse F, da Silva RC, Baird R, Young SD, Bailey EH, Mclaughlin MJ. Improving the efficacy of selenium fertilizers for wheat biofortification. Scientific Reports 2019; 9:19520. https://doi.org/10.1038/s41598-019-55914-0 Search in Google Scholar

Sors TG, Ellis DR, Salt DE. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 2005; 86(3):373-89. https://doi:10.1007/s11120-005-5222-9 Search in Google Scholar

Van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 2013; 112(6):965-972. https://doi:10.1093/aob/mct163 Search in Google Scholar

Zhou X, Yuan Y, Yang Y, Rutzke M, Thannhauser TW, Kochian LV, Li L. Involvement of a broccoli COQ5 methyltransferase in the production of volatile selenium compounds. Plant Physiol 2009; 151(2):528-540. https://doi:10.1104/pp.109.142521 Search in Google Scholar

Balakhnina TI, Nadezhkina ES. Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 2017; 64:215-223. https://doi.org/10.1134/S1021443717010022 Search in Google Scholar

Kolbert Z, Lehotai N, Molnár Á, Feigl G. “The roots” of selenium toxicity: A new concept. Plant Signaling & Behavior 2016; 11:10, e1241935. https://doi:10.1080/15592324.2016.1241935 Search in Google Scholar

Inskeep WP, Bloom PR. Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone. Plant Physiol 1985; 77(2):483-485. https://doi:10.1104/pp.77.2.483 Search in Google Scholar

Jambunathan N. Determination and Detection of Reactive Oxygen Species (ROS), Lipid Peroxidation, and Electrolyte Leakage in Plants, in R. Sunkar (ed.) Plant Stress Tolerance Methods in Molecular Biology 639 © Springer Science+Business Media LLC, 2010; pp 291. https://doi:10.1007/978-1-60761-702-0_18 Search in Google Scholar

Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for Determination of Proline in Plants. In: R. Sunkar (ed.) Plant Stress Tolerance Methods in Molecular Biology 639 © Springer Science+Business Media LLC, 2010; pp 317. https://doi:10.1007/978-1-60761-702-0_20 Search in Google Scholar

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Search in Google Scholar

Lyons GH, Stangoulis JCR, Graham RD. Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 2005; 270:179–188. https://doi.org/10.1007/s11104-004-1390-1 Search in Google Scholar

Molnárová M, Fargasová A. Se (IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L. Triticum aestivum L.) and dicotyledonae crops (Sinapis alba L. Brassica napus L.). J Hazard Mater 2009; 172:854-861. https://doi.org/10.1016/j.jhazmat.2009.07.096 Search in Google Scholar

Padmaja K, Prasad DKK, Prasad ARK. Effect of selenium on chlorophyll biosynthesis in mung bean seedling. Phytochem 1989; 28:3321-3324. https://doi.org/10.1016/0031-9422(89)80339-5 Search in Google Scholar

Grace SG, Logan BA. Energy dissipation and radical scavenging by the plant phenyl propanoid pathway. Phil Trans R Soc B 2000; 355(1402):1499-1510. https://doi:10.1098/rstb.2000.0710 Search in Google Scholar

Hartikainen H, Xue T, Piironen V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000; 225:193–200. https://doi.org/10.1023/A:1026512921026 Search in Google Scholar

Łabanowska M, Filek M, Kościelniak J, Kurdziel M, Kuliś E, Hartikainen H. The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 2012; 169(3):275-284. https://doi.org/10.1016/j.jplph.2011.10.012 Search in Google Scholar

Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci 2010; 15(2):89-97. https://doi:10.1016/j.tplants.2009.11.009 Search in Google Scholar

Siripornadulsil S, Traina S, Verma DP, Sayre RT. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 2002; 14(11):2837-2847. https://doi:10.1105/tpc.004853 Search in Google Scholar

Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H. Exogenous proline application reduces phytotoxic effects of selenium by minimizing oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res 2011; 140(3):354-367. https://doi:10.1007/s12011-010-8699-9 Search in Google Scholar

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 2002; 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9 Search in Google Scholar

Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveir JAG. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 2004; 163:563-571. https://doi.org/10.1111/j.1469-8137.2004.01139.x Search in Google Scholar

Freeman JL, Tamaoki M, Stushnoff C, Quinn C, Cappa J, Devonshire J, Fakra S, Marcus M, McGrath S, Hoewyk DV, Pilon-Smits EAH. Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 2010; 153(4):1630-1652. https://doi:10.1104/pp.110.156570 Search in Google Scholar

Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8(1):2789. https://doi:10.1038/s41598-018-21268-2 Search in Google Scholar

Sharma S, Kaur N, Kaur S, Nayyar H. Ascorbic Acid Reduces the Phytotoxic Effects of Selenium on Rice (Oryza Sativa L.) by Up-Regulation of Antioxidative and Metal-Tolerance Mechanisms. J Plant Physiol Pathol 2014; 2:3. https://doi:10.4172/2329-955X.1000128 Search in Google Scholar

Djanaguiraman M, Devi DD, Arun K, Shanker J, Sheeba A, Bangarusamy U. Impact of selenium spray on monocarpic senescence of soybean (Glycine Max L.). J Food Agric Environ 2004; 2(2):44-47. https://doi.org/10.1234/4.2004.162 Search in Google Scholar

Hugouvieux V, Dutilleul C, Jourdain A, Reynaud F, Lopez V, Bourguignon J. Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. Plant Physiol 2009; 151(2):768-81. https://doi:10.1104/pp.109.144808 Search in Google Scholar

Akbulut M, Çakır S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 2010; 48(2-3):160-166. https://doi.org/10.1016/j.plaphy.2009.11.001 Search in Google Scholar

SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc. Search in Google Scholar

Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C. Proline inhibits aggregation during protein refolding. Protein Sci 2000; 9:344-352. https://doi:10.1110/ps.9.2.344 Search in Google Scholar

Halušková L, Valentovičová K, Huttová J, Mistrík I, Tamás L. Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 2009; 47(11-12):1069-1074. https://doi:10.1016/j.plaphy.2009.08.003 Search in Google Scholar

Yilmaz S, Temizgül R, Yürürdurmaz C, Kaplan M. Oxidant and antioxidant enzyme response of redbine sweet sorghum under NaCl salinity stress. Bioagro 2020; 32(1): 31-38. https://revistas.uclave.org/index.php/bioagro/article/view/2684 Search in Google Scholar

Yilmaz SH, Kaplan M, Temizgul R, Yilmaz S. Antioxidant enzyme response of sorghum plant upon exposure to Aluminum, Chromium and Lead heavy metals. Turk J Biochem 2017; 42(4): 503-512. https://doi.org/10.1515/tjb-2016-0112 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Genetica, Biotecnologia, Bioinformatica, Scienze della vita, altro