Open Access

Pupils’ Preconceptions About Heat, Temperature and Energy


Cite

[l] Neumann K, Viering T, Boone WJ, Fischer HE. Towards a learning progression of energy. J Res Sci Teach. 2013;50(2):162-88. DOI: 10.1002/tea.21061.10.1002/tea.21061Search in Google Scholar

[2] Baran M, Sozbilir M. An application of context-and problem-based learning (C-PBL) into teaching thermodynamics. Res Sci Educ. 2018;48(4):663-89. DOI: 10.1007/s11165-016-9583-1.10.1007/s11165-016-9583-1Search in Google Scholar

[3] Holman J, Pilling G. Thermodynamics in context: A case study of contextualized teaching for undergraduates. J Chem Educ. 2004;81(3):373. DOI: 10.1021/ed081p373.10.1021/ed081p373Search in Google Scholar

[4] Castier M, Amer MM. XSEOS: An evolving tool for teaching chemical engineering thermodynamics. Educ Chem Eng. 2011;6(2):e62-70. DOI: 10.1016/j.ece.2010.12.002.10.1016/j.ece.2010.12.002Search in Google Scholar

[5] Barker V. Beyond Appearances: Students’ Misconceptions about Basic Chemical Ideas. A report prepared for the Royal Society of Chemistry; 2000. DOI: 10.1.1.649.3454.Search in Google Scholar

[6] Lewis EL, Linn MC. Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. J Res Sci Teach. 1994;31(6):657-77. DOI: 10.1002/tea.3660310607.10.1002/tea.3660310607Search in Google Scholar

[7] Erickson G, Tiberghien A. Heat and Temperature. Children’s Ideas in Science. Philadelphia: Open University Press; 1985. ISBN: 0335150403.Search in Google Scholar

[8] Kircher E, Schneider W, editors. Physics Didactics in Practice. Berlin: Springer-Verlag; 2013. ISBN: 3540419373.Search in Google Scholar

[9] Barke HD, Hazari A, Yitbarek S. Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin: Springer-Verlag; 2009. ISBN: 978354070988-6.Search in Google Scholar

[10] Suchocki JA. Conceptual Chemistry. 5th ed. London: Pearson Education; 2014. ISBN: 9780321804419.Search in Google Scholar

[11] Enggarani B, Ibnu S, Santoso A. Elicit-Predict-Confront-Observe-Explain-Reinforce (EPCOER) learning on thermochemistry to reduce alternative concept among students with different initial knowledge. JPS. 2019;7(3). DOI: 10.17977/jps.v7i3.12520.Search in Google Scholar

[12] Chen F, Zhang S, Guo Y, Xin T. Applying the rule space model to develop a learning progression for thermochemistry. Res Sci Educ. 2016; 47(6):1357-78. DOI: 10.1007/s11165-016-9553-7.10.1007/s11165-016-9553-7Search in Google Scholar

[13] Montero E, Alaoui FEM, González-Fernández MJ, Aguilar F. Teaching thermodynamics to electronic engineers through active teaching strategies. EDUCON. IEE. 2012. DOI: 10.1109/EDUCON.2012.6201071.10.1109/EDUCON.2012.6201071Search in Google Scholar

[14] Etiubon RU, Ugwu AN. Problem-based learning and students’ academic achievement on thermodynamics: A case study of University of Uyo. IOSR-JRME. 2016;6(5):36-41.Search in Google Scholar

[15] Ceylan T. Challenges of engineering thermodynamics education. Proc 2012 ASEE Annual Conf. 2012. Available from: http://ilin.asee.org/Conference2012/Papers/Ceylan.pdf.Search in Google Scholar

eISSN:
2084-4506
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other