Open Access

The expression levels of microRNAs associated with T and B cell differentiation/stimulation in ankylosing spondylitis


Cite

Khan MA. Clinical features of ankylosing spondylitis. In: Hochberg MC, Silman AJ, Slomen JS, Weinblatt ME, Weisman MH, Editors. Rheumatolgy, 3rd ed. London, UK: Mosby; 2003: 1161-1181.KhanMAClinical features of ankylosing spondylitisHochbergMCSilmanAJSlomenJSWeinblattMEWeismanMHRheumatolgy, 3rd edLondon, UKMosby200311611181Search in Google Scholar

Rémy M, Bouillet P, Bertin P, Leblanche AF, Bonnet C, Pascaud JL, et al. Evaluation of magnetic resonance imaging for the detection of sacroiliitis in patients with early seronegative spondylarthropathy. Rev Rhum Engl Ed. 1996; 63(9): 577-583.RémyMBouilletPBertinPLeblancheAFBonnetCPascaudJLet alEvaluation of magnetic resonance imaging for the detection of sacroiliitis in patients with early seronegative spondylarthropathyRev Rhum Engl Ed1996639577583Search in Google Scholar

Zochling J, Smith EU. Seronegative spondyloarthritis. Best Pract Res Clin Rheumatol. 2010; 24(6): 747-756.ZochlingJSmithEUSeronegative spondyloarthritisBest Pract Res Clin Rheumatol201024674775610.1016/j.berh.2011.02.00221665123Search in Google Scholar

Zhang L, Zhang YJ, Chen J, Huang XL, Fang GS, Yang LJ, et al. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review. Microb Pathog. 2018; 117:49-54.ZhangLZhangYJChenJHuangXLFangGSYangLJet alThe association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic reviewMicrob Pathog2018117495410.1016/j.micpath.2018.02.02029438717Search in Google Scholar

Akassou A, Bakri Y. Does HLA-B27 Status influence ankylosing spondylitis phenotype? Clin Med Insights Arthritis Musculoskelet Disord. 2018; 11: 117954411775 1627.AkassouABakriYDoes HLA-B27 Status influence ankylosing spondylitis phenotype?Clin Med Insights Arthritis Musculoskelet Disord20181111795441177510.1177/1179544117751627576414629343996Search in Google Scholar

Mahmoudi M, Aslani S, Nicknam MH, Karami J, Jamshidi AR. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol. 2017; 27(2): 198-209.MahmoudiMAslaniSNicknamMHKaramiJJamshidiARNew insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modificationsMod Rheumatol201727219820910.1080/14397595.2016.120617427425039Search in Google Scholar

Wellcome Trust Case Control Consortium; Australo-Anglo American Spondylitis Consortium (TASC); Burton PR, Clayton DG, Cardon LR, Craddock N, Deloucas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007; 39(11): 1329-1337.Wellcome Trust Case Control Consortium; Australo-Anglo American Spondylitis Consortium (TASC)BurtonPRClaytonDGCardonLRCraddockNDeloucasPDuncansonAet alAssociation scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variantsNat Genet200739111329133710.1038/ng.2007.17268014117952073Search in Google Scholar

Ni Y, Jiang C. Identification of potential target genes for ankylosing spondylitis treatment. Medicine (Baltimore) 2018; 97(8): e9760.NiYJiangCIdentification of potential target genes for ankylosing spondylitis treatmentMedicine (Baltimore)2018978e976010.1097/MD.0000000000009760584202129465556Search in Google Scholar

Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Control of gene expression. In: Bird A, Brockdorff N, Guthrie C, Lee J, Levine M, Madhani H, Editors. Molecular Biology of the Cell, 6th ed. New York, NY, USA: Galrland Science, Taylor & Francis Group, 2015: 429-431.AlbertsBJohnsonALewisJMorganDRaffMRobertsKet alControl of gene expressionBirdABrockdorffNGuthrieCLeeJLevineMMadhaniHMolecular Biology of the Cell, 6th edNew York, NY, USAGalrland Science, Taylor & Francis Group2015429431Search in Google Scholar

Jiang Y, Wang L. Role of histone deacetylase 3 in ankylosing spondylitis via negative feedback loop with microRNA-130a and enhancement of tumor necrosis factor-1α expression in peripheral blood mononuclear cells. Mol Med Rep. 2016; 13(1): 35-40.JiangYWangLRole of histone deacetylase 3 in ankylosing spondylitis via negative feedback loop with microRNA-130a and enhancement of tumor necrosis factor-1α expression in peripheral blood mononuclear cellsMol Med Rep2016131354010.3892/mmr.2015.4494468611426531724Search in Google Scholar

Lai NS, Yu HC, Chen HC, Yu CL, Huang HB, Lu MC. Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin Exp Immunol. 2013; 173(1): 47-57.LaiNSYuHCChenHCYuCLHuangHBLuMCAberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesisClin Exp Immunol20131731475710.1111/cei.12089369453423607629Search in Google Scholar

Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisford P, Calin A. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol. 1994; 21(12): 2286-2291.GarrettSJenkinsonTKennedyLGWhitelockHGaisfordPCalinAA new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity IndexJ Rheumatol1994211222862291Search in Google Scholar

Calin A, Garrett S, Whitelock H, Kennedy LG, O’Hea J, Mallorie P, et al. A new approach to defining functional ability in ankylosing spondylitis: The development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol. 1994; 21(12): 2281-2285.CalinAGarrettSWhitelockHKennedyLGO’HeaJMalloriePet alA new approach to defining functional ability in ankylosing spondylitis: The development of the Bath Ankylosing Spondylitis Functional IndexJ Rheumatol1994211222812285Search in Google Scholar

Ricci-Vitiani L, Vacca A, Potolicchio I, Scarpa R, Bitti P, Sebastiani G, et al. MICA gene triplet repeat polymorphism in patients with HLA-B27 positive and negative ankylosing spondylitis from Sardinia. J Rheumatol. 2000; 27(9): 2193-2197.Ricci-VitianiLVaccaAPotolicchioIScarpaRBittiPSebastianiGet alMICA gene triplet repeat polymorphism in patients with HLA-B27 positive and negative ankylosing spondylitis from SardiniaJ Rheumatol200027921932197Search in Google Scholar

Beltz GT. miR-142 keeps CD4+ DCs in balance. Blood. 2013; 121(6): 871-872.BeltzGTmiR-142 keeps CD4+ DCs in balanceBlood2013121687187210.1182/blood-2012-12-47258923393018Search in Google Scholar

Sun Y, Sun J, Tomomi T, Nieves E, Mathewson N, Tamaki H, et al. PU. 1-dependent transcriptional regulation of miR-142 contributes to its hematopoietic cell-specific expression and modulation of IL-6. J Immunol. 2013; 190(8): 4005-4013.SunYSunJTomomiTNievesEMathewsonNTamakiHet alPU. 1-dependent transcriptional regulation of miR-142 contributes to its hematopoietic cell-specific expression and modulation of IL-6J Immunol201319084005401310.4049/jimmunol.1202911361952923509362Search in Google Scholar

Talebi F, Ghorbani S, Chan WF, Boghozian R, Masoumi F, Ghasemi S, et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation. 2017; 14(1): 55.TalebiFGhorbaniSChanWFBoghozianRMasoumiFGhasemiSet alMicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosisJ Neuroinflammation20171415510.1186/s12974-017-0832-7535626428302134Search in Google Scholar

Duijvis NW, Moerland PD, Kunne C, Slaman MMW, van Dooren FH, Vogels EW, et al. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis. PLoS One. 2017; 12(10): e0185097.DuijvisNWMoerlandPDKunneCSlamanMMWvan DoorenFHVogelsEWet alInhibition of miR-142-5P ameliorates disease in mouse models of experimental colitisPLoS One20171210e018509710.1371/journal.pone.0185097565320229059189Search in Google Scholar

Teng Z, Xie X, Zhu Y, Liu J, Hu X, Na Q, et al. miR-142-5p in Bone marrow-derived mesenchymal stem cells promotes osteoporosis involving targeting adhesion molecule VCAM-1 and inhibiting cell migration. Biomed Res Int. 2018; 2018: 3274641. doi: 10.1155/2018/3274641. eCollection 2018.TengZXieXZhuYLiuJHuXNaQet almiR-142-5p in Bone marrow-derived mesenchymal stem cells promotes osteoporosis involving targeting adhesion molecule VCAM-1 and inhibiting cell migrationBiomed Res Int20182018327464110.1155/2018/3274641eCollection 2018589635129789783Open DOISearch in Google Scholar

Lin XT, Zheng XB, Fan DJ, Yao QQ, Hu JC, Lian L, et al. MicroRNA-143 targets ATG2B to inhibit autophagy and increase inflammatory responses in Crohn’s disease. Inflamm Bowel Dis. 2018; 24(4): 781-791.LinXTZhengXBFanDJYaoQQHuJCLianLet alMicroRNA-143 targets ATG2B to inhibit autophagy and increase inflammatory responses in Crohn’s diseaseInflamm Bowel Dis201824478179110.1093/ibd/izx07529562274Search in Google Scholar

Hong BK, You S, Yoo SA, Park D, Hwang D, Cho CS, et al. MicroRNA-143 and 145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp Mol Med. 2017; 49(8): e363.HongBKYouSYooSAParkDHwangDChoCSet alMicroRNA-143 and 145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritisExp Mol Med2017498e36310.1038/emm.2017.108557950628775366Search in Google Scholar

eISSN:
1311-0160
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, other