1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

Elastic Constants of Tetragonal Cu2ZnSnS4 Semiconductor: AB-Initio Calculation

Published Online: 19 Jun 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 08 Mar 2022
Accepted: 10 Jun 2022
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

In this work, an ab-initio calculation is used to investigate the elastic constants and some other mechanical and thermal parameters of tetragonal Cu2ZnSnS4 (CZTS) quaternary semiconducting bulk material in Kesterite (KS) and Stannite (ST) phases. The Quantum Espresso code within the Ultra Soft pseudo potentials (USPP) and the local density approximation (LDA) approach were used in the calculation. Firstly,, studies are started with the prediction of the elastic stiffness constants Cij and the normal and shear anisotropy factors. Then some other mechanical moduli, especially the isotropic bulk modulus B, the shear modulus G, the Young modulus E, the Poisson’s ratio ν, and the Pugh’s criteria (G/B) are delivered. The analysis of the mechanical stability criteria at equilibrium shows that our elastic stiffness constants Cij of CZTS material obey all the stability conditions. Additionally, some other parameters of the CZTS semiconductor, especially: the Vickers hardness HV, the sound velocity, the Debye temperature θD and the melting temperature Tm were also calculated. The obtained values of the elastic constants Cij and other mechanical and thermal parameters agree well with experimental and other theoretical results of the literature. The Debye temperature θD of the KS phase was found at around 332.7 K, and that of the stannite phase was found equal to 329.1 K, respectively.

Keywords

[1] M. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt. Res. Appl., 18 (2010) 34610.1002/pip.1021 Search in Google Scholar

[2] H. Heriche, P. Chelvanathan, S.A. Shahahmadi, Y. Yus, B. Bais, Z. Rouabah, S. K. Tiong, K. Sopian, N. Amin, Chalcogenide Lett., 16 (2019) 595 Search in Google Scholar

[3] H. Heriche, Z. Rouabah, N. Bouarissa, Optik, 127 (2016) 11751 Search in Google Scholar

[4] H. Heriche, I. Bouchama, N. Bouarissa, Z. Rouabah, A. Dilmi, Optik, 144(2017) 37810.1016/j.ijleo.2017.07.006 Search in Google Scholar

[5] J. P. Sawant, H. M. Pathan, R. B. Kale, ES energy environ., 10 (2020) 73 Search in Google Scholar

[6] M. Khushaim, S. Alamri, N. Kattan, A. Jaber, S. Alamri, J. TaibahUniv. Sci., 15 (2021) 329 Search in Google Scholar

[7] K. Ito, Copper zinc tin sulphide-based thin-film solar cells, John Wiley & Sons, (2015)10.1002/9781118437865 Search in Google Scholar

[8] T. Kato, H. Hiroi, N. Sakai, S. Muraoka, H. Sugimoto, Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells, Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, pp. 2236–2239 (2012) Search in Google Scholar

[9] C. Persson, J. Appl. Phys., 107 (2010) 053710 Search in Google Scholar

[10] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol. Energy Mater. Sol. Cells., 65 (2001) 14110.1016/S0927-0248(00)00088-X Search in Google Scholar

[11] T. Maeda, S. Nakamura, T. Wada, Mater. Res. Symp. Proc., 1165 (2009) 1165-M04-0310.1557/PROC-1165-M04-03 Search in Google Scholar

[12] P. Prabeesh, I. Packia Selvam, S. N. Potty, Appl. Phys. A,124 (2018) 22510.1007/s00339-018-1649-7 Search in Google Scholar

[13] Z. Seboui, Y. Cuminal, N. Kamoun-Turki, J. Renew. Sustain. Energy, 5 (2013) 02311310.1063/1.4795399 Search in Google Scholar

[14] T. Gürel, C. Sevik, T. Çağin, Phys. Rev. B, 84 (2011) 205201(7 pages) Search in Google Scholar

[15] P. P. Gunaicha, S. Gangam, J. L. Roehl, S. V. Khare, Sol. Energy, 102 (2014) 27610.1016/j.solener.2014.01.015 Search in Google Scholar

[16] X. He, H. Shen, Physica B, 406 (2011) 4604 Search in Google Scholar

[17] I. Camps, J. Coutinho, M. Mir, A. F. da Cunha, M. J. Rayson, P. R. Briddon, Semicond. Sci. Technol., 27 (2012) 115001-1 (8 pages) Search in Google Scholar

[18] S. Baroni, A. DalCorso, S. deGironcoli, P. Giannozzi, Rev. Med. Phys.,73 (2001) 51510.1103/RevModPhys.73.515 Search in Google Scholar

[19] S. Scandolo, P. Giannozzi, C. Cavazzoni, S. deGironcoli, A. Pasquarello, S. Baroni, Z. Kristallogr., 220 (2005) 574 Search in Google Scholar

[20] S. Daoud, N. Bouarissa, Theor. Chem. Accounts., 138 (2019) 4910.1007/s00214-019-2439-9 Search in Google Scholar

[21] S. Adachi, Earth-Abundant Materials for Solar Cells: Cu2–II–IV–VI4 Semiconductors, 1st Edition, John Wiley & Sons, (2015) Search in Google Scholar

[22] N. Bioud, X-W. Sun, N. Bouarissa, S. Daoud, Z. Naturforsch. A,73 (2018) 76710.1515/zna-2018-0120 Search in Google Scholar

[23] N. Bioud, X-W. Sun, S. Daoud, T. Song, R. Khenata, S. Bin-Omran, Optik,155 (2018) 17 Search in Google Scholar

[24] S. Daoud, N. Bouarissa, A. Benmakhlouf, O. Allaoui, Phys. Status Solidi B, 257 (2020) 190053710.1002/pssb.201900537 Search in Google Scholar

[25] N. Bioud, N. Bouarissa, K. Kassali, J. Electron. Mater., 46 (2017) 252110.1007/s11664-017-5335-x Search in Google Scholar

[26] B. Ghebouli, M.A. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, M. Reffas, Solid State Commun., 149 (2009) 224410.1016/j.ssc.2009.09.001 Search in Google Scholar

[27] S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater., 12 (2013) 191 Search in Google Scholar

[28] J.P. Perdew, A. Zunger, Phys. Rev. B, 23 (1981) 5048 Search in Google Scholar

[29] D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892 Search in Google Scholar

[30] H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976) 5188 Search in Google Scholar

[31] Z.T.Y. Liu, X. Zhou, D. Gall, S.V. Khare, Comput. Mater. Sci.,84 (2014) 36510.1016/j.commatsci.2013.12.038 Search in Google Scholar

[32] F. Bounab, N. Bouarissa, A. Merrouche, A. Benmakhlouf, ·S. Daoud, N. Chelali, J. Comput. Electron., 18 (2019) 1111 Search in Google Scholar

[33] K. Balasubramanian, S.V. Khare, D. Gall, Phys. Rev. B, 94 (2016) 17411110.1103/PhysRevB.94.174111 Search in Google Scholar

[34] A. Benamrani, S. Daoud, P.K. Saini, J. Nano- Electron. Phys., 13No 1 (2021) 01008 Search in Google Scholar

[35] A. Benamrani, S. Daoud, Manal M. Abdus Salam, H. Rekab-Djabri, Mater. Today Commun, 28 (2021) 10252910.1016/j.mtcomm.2021.102529 Search in Google Scholar

[36] Y. Tian, P. Wu, J. Electron Mater., 47 (2018) 260010.1007/s11664-017-6041-4 Search in Google Scholar

[37] S. Daoud, Int. J. Adv. Res. Phys. Sci., 1 (2014) 1 Search in Google Scholar

[38] D.S. Sanditov, A.A. Mashanov, B.D. Sanditov, S.S. Sangadiev, Tech. Phys., 56 (2011) 63210.1134/S1063784211050288 Search in Google Scholar

[39] Z. Tian, L. Sun, J. Wang, J. Wang, J. Eur. Ceram. Soc., 35 (2015) 192310.1016/j.jeurceramsoc.2015.01.001 Search in Google Scholar

[40] A. Benmakhlouf, A. Benmakhlouf, O. Allaoui, S. Daoud, Chinese J. Phys., 57 (2019) 179.10.1016/j.cjph.2018.11.017 Search in Google Scholar

[41] H-J. Hou, F-J. Kong, Comput. Mater. Sci., 50 (2011) 1437 Search in Google Scholar

[42] S. Daoud, N. Bioud, P.K. Saini, J. Magnes. Alloys.7 (2019) 335.10.1016/j.jma.2019.01.006 Search in Google Scholar

[43] S. I. Novikova, Thermal expansion, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer, Academic, New York, (1966), Vol. 2, pp. 33–48. Search in Google Scholar

[44] A. Nagaoka, K. Yoshino, K. Aoyagi, T. Minemoto, Y. Nose, T. Taniyama, K. Kakimoto, H. Miyake, J. Cryst. Growth, 393 (2014) 167 Search in Google Scholar

[45] S. Daoud, N. Bioud, L. Belagraa, N. Lebgaa, J. Nano- Electron. Phys., 5No 4 (2013) 04061 Search in Google Scholar

[46] W. Schäfer and R. Nitsche, Z. Kristallogr., 145 (1977) 356 Search in Google Scholar

[47] H. Matsushita, T. Ichikawa, A. Katsui, J. Mater. Sci., 40 (2005) 200310.1007/s10853-005-1223-5 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo