1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

Structural, Electronic, Elastic, Mechanical, Optical and Thermoelectric Properties of the Chalcogenide Double Perovskites A2GaNbS6 (A = Ca, Sr and Ba): Insights from Density Functional Theory Calculations

Published Online: 28 May 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 07 Mar 2022
Accepted: 10 May 2022
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

Recently, the lead-free double perovskite compounds have been evinced to be promising candidate for thermoelectric and optoelectronic technologies. In this paper; we have probed a theoretical works on the different physical properties: Structural, electronic, elastic, optical and thermoelectrical properties of the chalcogenide double perovskites A2GaNbS6 (A=Ca, Sr and Ba) within the instructions of density functional theory. The calculations have incorporated using the full potential linearized augmented plane waves (FP-LAPW) method within gradient generalized approximation (GGA) and the modified Becke-Johnson potential (mBJ) to describe the exchange-correlation potential as embodied in the WIEN2K code. The computed structural results show that the non-magnetic structure state is energetically the most stable structure in the cubic Fm̄3m(225) configuration, also the elastic and mechanical properties indicate that A2GaNbS6 (A=Ca, Sr and Ba) have a ductile nature. According to the electronic plots the three compounds have a semiconducting behavior with indirect (pseudo-direct) band gap of 1.21, 1.28 and 1.32 eV. Important optical responses of studied chalcogenide double perovskites are found in the visible and ultraviolet energy ranges. Finally, the thermoelectric effectiveness of the three compounds have been probed by computing parameters like Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit with semi-classical Boltzmann theory and constant relaxation time approximation as implemented in BoltzTrap code, the obtained results show that the chalcogenide double perovskites could be a good candidate for thermoelectric applications.

Keywords

[1] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”. Inorg. Chem. (2005), 44, 20, 6841–6851.10.1021/ic0508371 Search in Google Scholar

[2] T. M. Tritt and M.A. Subramanian, MRS Bulletin, “Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View”. (2006),31, 18810.1557/mrs2006.44 Search in Google Scholar

[3] D. Kraemer, L. Hu, A. Muto, X. Chen, G. Chen, and M. Chiesa, “Photovoltaicthermoelectric hybrid systems: A general optimization methodology”, Appl. Phys. Lett. (2008), 92, 243503. Search in Google Scholar

[4] Jung, H.S. and Park, N. “Perovskite Solar Cells: From Materials to Devices”. Small. (2015), 11, 10-25. Search in Google Scholar

[5] M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martin-Gonzalez, “Skutterudites as thermoelectric materials: revisited”. RSC Adv, 5, (2015) 41653.10.1039/C5RA03942H Search in Google Scholar

[6] Vikram, J. Kangsabanik, Enamullah and A. Aftab, “Bismuth based half-Heusler alloys with giant thermoelectric figures of merit”. J. Mater. Chem. A.5 (2017) 6131-6139 Search in Google Scholar

[7] M. Khetir, A. Maafa, F. Boukabrine, H. Rozale. A. Bouabça and A. Chahed, “Elastic constants, electronic properties and thermoelectric response of LiAIX (X=C, Si, Ge, and Sn) half-Heusler compounds”, Rev Mex Fisica. 68 (2022) 011002. Search in Google Scholar

[8] M. Grätzel, “The light and shade of perovskite solar cells”. Nat Mater.13, (2014) 838-842. Search in Google Scholar

[9] C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang and Y. Mai, “Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process”. ACS Appl Mater Interfaces. 17 (2015) 9066-9071. Search in Google Scholar

[10] HS. Kim, JY. Seo, NG. Park, “Material and Device Stability in Perovskite Solar Cells”. ChemSusChem. 18, (2016) 2528-2540. Search in Google Scholar

[11] M. Ullah, S. A. Khan, G. Murtaza, R. Khenata, N. Ullah, S. Bin Omran, Electronic, thermoelectric and magnetic properties of La2NiMnO6 and La2CoMnO6, Journal of Magnetism and MagneticMaterials.377, (2015)197-203. Search in Google Scholar

[12] Babayigit, A., Ethirajan, A., Muller, M. et al. “Toxicity of organometal halide perovskite solar cells”. Nature Mater (2016) 15, 247–251.10.1038/nmat4572 Search in Google Scholar

[13] S. Meenakshi, V. Vijayakumar, S.N. Achary, A.K. Tyagi, “High pressure investigation on double perovskite Ba2MgWO6”, Journal of Physics and Chemistry of Solids, 72, (2011), 609-612.10.1016/j.jpcs.2011.01.012 Search in Google Scholar

[14] A.W. Sleight and R. Ward, “Compounds of Heptavalent Rhenium with the Perovskite Structure”, J. Am. Chem. Soc. 83, 5, (1961)1088–1090.10.1021/ja01466a021 Search in Google Scholar

[15] F.K. Patterson, Ca.W. Moeller, and R. Ward, “Magnetic Oxides of Molybdenum(V) and Tungsten(V) with the Ordered Perovskite Structure”, Inorg. Chem. 2, 1, (1963) 196–198.10.1021/ic50005a050 Search in Google Scholar

[16] F. S. Galasso, F. C. Douglas, and R. J. Kasper, “Relationship Between Magnetic Curie Points and Cell Sizes of Solid Solutions with the Ordered Perovskite Structure”, J. Chem. Phys. 44, (1966)167210.1063/1.1726907 Search in Google Scholar

[17] M. T. Anderson, K. B. Greenwood, G. A. Taylor and K. R. Poeppelmeier, “B-Cation Arrangements in Double Perovskites”, Progress in Solid State Chemistry, 22, 3, (1993) 197-233.10.1016/0079-6786(93)90004-B Search in Google Scholar

[18] K. Ramesha, V. Thangadurai, D. Sutar, S. Subramanyam, G.N. Subbanna, J. Gopalakrishnan, “ALaMnBO6 (A=Ca, Sr, Ba; B=Fe, Ru) double perovskites”, Materials Research Bulletin,35, (2000)559-565.10.1016/S0025-5408(00)00248-8 Search in Google Scholar

[19] J. B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, et al “Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca)”, Phys. Rev. B,68, (2003)144431.10.1103/PhysRevB.68.144431 Search in Google Scholar

[20] Al. Dutta, T. P. Sinha, and S. Shannigrahi, “Dielectric relaxation and electronic structure of double perovskite Sr2FeSbO6,” Journal of Applied Physics,104, (2008) 064114.10.1063/1.2978218 Search in Google Scholar

[21] H.-R. Fuh, K.-C. Weng, Y.-P. Liu, Y.-K. Wang, J. “New ferromagnetic semiconductor double perovskites: La2FeMO6 (M = Co, Rh, and Ir) “. Alloys Compd. 622 (2015) 657–661.10.1016/j.jallcom.2014.10.010 Search in Google Scholar

[22] N. Zu, J. Wang, Y. Wang, Z. Wu, J. “Half metallicity in Sr2CrOsO6 via Na doping”. Alloys Compd. 636 (2015) 257–260.10.1016/j.jallcom.2015.02.173 Search in Google Scholar

[23] S. Zhao, C. Lan, J. Ma, S.S. Pandey, S. Hayase, T. Ma, “Research Update: Behind the high efficiency of hybrid perovskite solar cells. “Solid State Commun. 213214 (2015) 19–23. Search in Google Scholar

[24] L. Agiorgousis, Y. Sun, D-H. Choe, D. West and S. Zhang.” Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics”. Adv. Theory Simul. 2, (2019)1800173.10.1002/adts.201800173 Search in Google Scholar

[25] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140, (1965) A1133.10.1103/PhysRev.140.A1133 Search in Google Scholar

[26] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,” Iterative minimization techniques for ab initio total-Energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys. 64, (1992) 1045. Search in Google Scholar

[27] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. H. Madsen, and L.D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids”, J. Chem. Phys. 152, (2020) 074101. Search in Google Scholar

[28] U.V. Barth and L. Hedin, “A local exchange-correlation potential for the spin polarized case. i”, J. Phys. C: Solid State Phys.5, (1972)1629.10.1088/0022-3719/5/13/012 Search in Google Scholar

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett. 78, (1997)1396.10.1103/PhysRevLett.78.1396 Search in Google Scholar

[30] A. R. Jishi, B. Oliver and A. Sharif, “Modeling of Lead Halide Perovskites for Photovoltaic Applications”, J. Phys. Chem. C, 118, (2021)28344-28349.10.1021/jp5050145 Search in Google Scholar

[31] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations”, Phys. Rev. B. 13, (1976) 5188.10.1103/PhysRevB.13.5188 Search in Google Scholar

[32] D. Becke and M. R. Roussel, “Exchange holes in inhomogeneous systems: A coordinate-space model”, Phys. Rev. 39, (1989) 3761. Search in Google Scholar

[33] G. K. H. Madsen, and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun.,175(2006)67.10.1016/j.cpc.2006.03.007 Search in Google Scholar

[34] A. E. Fedorovskiy, N. A. Drigo, M.K. Nazeeruddin, “The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range”, Small Methods (2019) 1900426–1900432.10.1002/smtd.201900426 Search in Google Scholar

[35] S. A. Khandy and D. C. Gupta, “Magneto-electronic, Mechanical, Thermoelectric and Thermodynamic Properties of Ductile Perovskite Ba2SmNbO6”. Mater. Chem. Phys., 239, (2020)121983.10.1016/j.matchemphys.2019.121983 Search in Google Scholar

[36] Wyckoff, W. G. Ralph, The analytical expression of the results of the theory of space-groups, Carnegie Institute of Washington, Washington, 318. Search in Google Scholar

[37] V. G. Tyuterev and N. Vast, “Murnaghan’s Equation of State for the Electronic Ground State Energy,” Computational Materials Science, (2006),350353.10.1016/j.commatsci.2005.08.012 Search in Google Scholar

[38] M. J. Mehl, J. E. Osburn, D. A. Papaconstantopoulos, and B. M. Klein, “Structural properties of ordered high-melting- temperature intermetallic alloys from first-principles total- energy calculations”. Phy. Rev. B, 41 (1990) 10311. Search in Google Scholar

[39] M. Born, “In on the Stability of Crystal Lattices”. Cambridge University Press, 1940, p. 160.10.1017/S0305004100017138 Search in Google Scholar

[40] M. Dacorogna, J.s. Ashkenazi, M. Peter, “Ab initio calculation of the tetragonal shear moduli of the cubic transition metals”, Phy. Rev. B.26 (1982) 1527. Search in Google Scholar

[41] Seh AQ, Gupta DC. “Exploration of highly correlated co- based quaternary Heusler alloys for spintronics and thermoelectric applications”. Int J Energy Res.43 (2019) 8864-8877. Search in Google Scholar

[42] B. Benichou, Z. Nabi, B. Bouabdallah, H. Bouchenafa. “Ab initio investigation of the electronic structure, elastic and magnetic properties of quaternary Heusler alloy Cu2MnSn1−xInx (x = 0, 0.25, 0.5, 0.75, 1)”. Rev Mex Fis 64, (2018) 135.10.31349/RevMexFis.65.468 Search in Google Scholar

[43] M. E. Fine, L. D. Brown, and H. L. Marcus, “Elastic constants versus melting temperature in metals”. Scr. Mettal, 18 (1984) 951. Search in Google Scholar

[44] H. Ehrenreich and M. H. Cohen, “Self-Consistent Field Approach to the Many-Electron Problem”, Phys. Rev. 115, (1959) 786.10.1103/PhysRev.115.786 Search in Google Scholar

[45] John S. Toll, “Causality and the Dispersion Relation: Logical Foundations”, Phys. Rev. 104, (1956) 1760-1770. Search in Google Scholar

[46] R. M. A. Azzam and A. M. El-Saba, “Reflectance of an absorbing substrate for incident light of arbitrary polarization: appearance of a secondary maximum at oblique incidence”, Appl. Opt.27,(1988)4034-4037. Search in Google Scholar

[47] B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said and R. Ahmad, “Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications”, Journal of Applied Physics,109, (20113) 023109.10.1063/1.3531996 Search in Google Scholar

[48] G. Madsen,D. J.Singh, BoltzTraP. “A code for calculating band-structure dependent quantities”, Computer Physics Communications,175, (2006) 67-71.10.1016/j.cpc.2006.03.007 Search in Google Scholar

[49] G. A. Slack, “Nonmetallic crystals with high thermal conductivity”, J. Phys. Chem. Solids, 34 (1973) 321. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo