1. bookVolume 62 (2020): Issue 1 (December 2020)
Journal Details
First Published
15 Dec 2012
Publication timeframe
1 time per year
access type Open Access

Electro-Magnetic Behavior of Highly Correlated Fluorides KFeF3, KCoF3 and KNiF3: A Comparative Ab-initio Study of Cation Effect

Published Online: 16 Dec 2020
Volume & Issue: Volume 62 (2020) - Issue 1 (December 2020)
Page range: 23 - 51
Received: 16 May 2020
Accepted: 01 Jun 2020
Journal Details
First Published
15 Dec 2012
Publication timeframe
1 time per year

Fluorides-based perovskites are currently the typical materials being used in spintronic devices, optoelectronic and magneto-resistance colossal fields. Solar cells made of Fluoro-perovskite hold much promise for the future of solar energy. The electronic structure and magnetic properties of KFeF3, KCoF3 and KNiF3 Fluorides are studied using ab initio Calculation. We have analysed the structural phases, total and partial electronic densities and band structures within the (DFT) vs the DFT+U description. We show the Electro-Magnetic Behavior using L(S)DA+U vs L(S)DA in a comparative study of cation effect by integrating three types of crystal structures (Cubic (Pm-3m), Four-Layered Hexagonal (P6/mmc), and Orthorhombic (Pnma)). Equilibrium lattices agree very well with experimental and theoretical data. Magnetic moment of each phase is discussed. The obtained results confirmed that the three crystal structures invested here exhibit Ferromagnetic (FM) behavior. The introduction of the Hubbard’s parameter U increases lattice parameters and magnetic moment. We deduce that the second cation plays an important role in the magnetic effects. L(S)DA+U show correctly that KFeF3, KCoF3 and KNiF3 are insulators.


[1] Hamdad Noura, Superlattices and Microstructures 76, 425 (2014).10.1016/j.spmi.2014.10.004Search in Google Scholar

[2] Noura, Hamdad, Physica B 406, 1194 (2011).10.1016/j.physb.2010.11.018Search in Google Scholar

[3] Labdelli Abbes, Hamdad Noura, Results in Physics, 5, 38 (2015).10.1016/j.rinp.2014.10.004Search in Google Scholar

[4] Ravinder Kour, Sandeep Arya, Sonali Verma, Jyoti Gupta, Pankaj Bandhoria, Vishal Bharti, Ram Datt, and Vinay Gupta, Global Challenges, 3, 1900050 (2019).10.1002/gch2.201900050Search in Google Scholar

[5] H. Tanaka, M. Misono, Curr. Opin. Solid State Mater. Sci., 5, 381, (2001).10.1016/S1359-0286(01)00035-3Search in Google Scholar

[6] Wei Li, Run Long, Jianfeng Tang, and Oleg V. Prezhdo, J. Phys. Chem. Lett. 10, 3788, (2019).10.1021/acs.jpclett.9b00641Search in Google Scholar

[7] A. A. Mubarak, Journal of Electronic Materials, 47, 887 (2018).10.1007/s11664-017-5871-4Search in Google Scholar

[8] N. L. Allan, D. T. Kulp, W. C. Mackrodt, Journal of Fluorine Chemistry, 45, 186 (1989).10.1016/S0022-1139(00)84556-XSearch in Google Scholar

[9] Monique Body, Gilles Silly, Christophe Legein, Jean-Yves Buzaré, The Journal of Physical Chemistry B 20, 10270 (2005).10.1021/jp046763g16852244Search in Google Scholar

[10] David P. Dobson, Simon A. Hunt, Alexander Lindsay-Scott, Ian G. Wood, Physics of the Earth and Planetary Interiors, 189, 171 (2011).10.1016/j.pepi.2011.08.010Search in Google Scholar

[11] Saswata Dasgupta, Bhaskar Rana, John M. Herbert, J. Phys. Chem. B 38, 8074 (2019).10.1021/acs.jpcb.9b04895Search in Google Scholar

[12] Rune Søndenå, Svein Stølen, and P. Ravindran, Phys. Rev. B 75, 184105 (2007).10.1103/PhysRevB.75.184105Search in Google Scholar

[13] J. L. Sommerdijk, A. Bril, Journal of Luminescence 11, 363 (1976).10.1016/0022-2313(76)90021-1Search in Google Scholar

[14] M. W. Shafer, Materials Research Bulletin, 4, 905 (1969).10.1016/0025-5408(69)90047-6Search in Google Scholar

[15] A. A. Mubarak, and A. A. Mousa, Comput. Mater. Sci. 59, 6 (2012).Search in Google Scholar

[16] A. A. Mubarak, and Saleh Al-Omeri, Journal of Magnetism and Magnetic Materials 382, 211 (2015)10.1016/j.jmmm.2015.01.073Search in Google Scholar

[17] Randal J. J., Ward R. J. Am. Chem. Soc. 81, 2629, (1959).10.1021/ja01520a007Search in Google Scholar

[18] K. Knox, Acta Cryst. 14, 583 (1961).Search in Google Scholar

[19] Clément Jakymiw, Lidunka Vočadlo, David P. Dobson, Edward Bailey, Andrew R. Thomson, John P. Brodholt, Ian G. Wood, and Alex Lindsay-Scott, Phys Chem Miner. 4, 311 (2018).Search in Google Scholar

[20] T. Nakajima, B. Žemva et A. Tressaud, Advanced Inorganic Fluorides: Synthesis, Characterization and Applications (2000).Search in Google Scholar

[21] Eva Gil-GonzálezAntonio PerejónPedro E. Sánchez-JiménezJosé M. CriadoLuis A. Pérez-Maqueda, in Handbook of Thermal Analysis and Calorimetry, (2018).Search in Google Scholar

[22] Ewa Kurzeja, Agnieszka Synowiec-Wojtarowicz, Małgorzata Stec, Marek Glinka, Stanisław Gawron, and Katarzyna Pawłowska-Góral, Int J Mol Sci. 7,15017, (2013).10.3390/ijms140715017374228523873295Search in Google Scholar

[23] Ruren Xu, Wenquin Pang, and Qisheng Hu, Modern Inorganic Synthetic Chemistry (2010).Search in Google Scholar

[24] Japanese Journal of Applied Physics 4A, 41 (2002).Search in Google Scholar

[25] L. Grigorjevaa, D. K. Millersa, V. Pankratova, R. T. Williamsb, R. I. Eglitisc, E. A. Kotomina, d, G. Borstel, Solid State Communications 129, 691 (2004).10.1016/j.ssc.2003.12.031Search in Google Scholar

[26] K. Ephraim Babu, A. Veeraiah, D. Tirupati Swamy, V. Veeraiah, Chin. Phys. Lett. 29, 117102, (2012).10.1088/0256-307X/29/11/117102Search in Google Scholar

[27] Eva Gil-GonzálezAntonio PerejónPedro E. Sánchez-JiménezJosé M. CriadoLuis A. Pérez-Maqueda, in Handbook of Thermal Analysis and Calorimetry, (2018).Search in Google Scholar

[28] G. Calestani, F. Mezzadri, in Photonic and Electronic Properties of Fluoride Materials, (2016).Search in Google Scholar

[29] Alain Tressaud, in Fluorine, Fluorine, a key element for the 21st century, (2019).10.1016/B978-0-12-812990-6.00002-7Search in Google Scholar

[30] A. S. Verma, 158, 34, (2013).10.1016/j.ssc.2013.01.005Search in Google Scholar

[31] Konrad T. Semrau, Journal of the Air Pollution Control Association, (2012).Search in Google Scholar

[32] P. Fazekas, Lecture Notes on Electron Correlations and Magnetism (World Scientific, Singapore), (1999).10.1142/2945Search in Google Scholar

[33] Jihara S. (2018) Sol-Gel Processing of Fluoride and Oxyfluoride Materials. In: Klein L., Aparicio M., Jitianu A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham, 1, 27 (2017).10.1007/978-3-319-19454-7_10-1Search in Google Scholar

[34] Stepan Syrotyuk, Solid State Phenomena 230, 79 (2015).10.4028/www.scientific.net/SSP.230.79Search in Google Scholar

[35] Richard D. Chambers FRS, Fluorine in Organic Chemistry, (2004).10.1002/9781444305371Search in Google Scholar

[36] C. F. Matta and R. J. Gillespie, Journal of Chemical Education, 79, 1141, (2002).10.1021/ed079p1141Search in Google Scholar

[37] P. Fazekas, Lecture Notes on Electron Correlations and Magnetism, World Scientific, Singapore, (1999).10.1142/2945Search in Google Scholar

[38] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).Search in Google Scholar

[39] S. Yamada, N. Abe, H. Sagayama, K. Ogawa, T. Yamagami, T. Arima, Phys. Rev. Lett. 123, 126602 (2019).Search in Google Scholar

[40] Nadeem Hussain, Fangfang Wu, Waqar Younas and Liqiang Xu, New J. Chem., 43, 11959 (2019).10.1039/C9NJ02221JSearch in Google Scholar

[41] Qianjin Zhu, Jihuai Wu, Pengqiang Yuan, Mingjing Zhang, Yanfei Dou, Xiaobing Wang, Jinjun Zou, Weihai Sun, Leqing Fan, and Zhang Lan, Energy Technology, 8, 1901017, (2020).10.1002/ente.201901017Search in Google Scholar

[42] Nengxu Li, Shuxia Tao, Yihua Chen, Xiuxiu Niu, Chidozie K. Onwudinanti, Chen Hu, Zhiwen Qiu, Ziqi Xu, Guanhaojie Zheng, Ligang Wang, Yu Zhang, Liang Li, Huifen Liu, Yingzhuo Lun, Jiawang Hong, Xueyun Wang, Yuquan Liu, Haipeng Xie, Yongli Gao, Yang Bai, Shihe Yang, Geert Brocks, Qi Chen and Huanping Zhou, Nature Energy, 4, 408 (2019).10.1038/s41560-019-0382-6Search in Google Scholar

[43] Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542, (2014).10.1126/science.125405025082698Search in Google Scholar

[44] J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309 (1996).Search in Google Scholar

[45] F. Tran and P. Blaha, Phys Rev. Lett. 102, 226401 (2009)10.1103/PhysRevLett.102.22640119658882Search in Google Scholar

[46] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn. University at Wien, Austria, 3, 9501031 (2001).Search in Google Scholar

[47] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar

[48] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.140.A1133Search in Google Scholar

[49] J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77,3865 (1996).Search in Google Scholar

[50] Tanghong Yi, Wei Chen, Lei Cheng, Ryan D. Bayliss, Feng Lin, Michael R. Plews, Dennis Nordlund, Marca M. Doeff, Kristin A. Persson, and Jordi Cabana, Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites, 10.1021/acs.chemma-536ter.6b04181.Open DOISearch in Google Scholar

[51] Pena, M. A.; Fierro, J. L. G. Chemical Structures and 678 Performance of Perovskite Oxides. Chem. Rev. 101, 1981 (2001).10.1021/cr980129f11710238Search in Google Scholar

[52] Goldschmidt, V. V. M Die Gesetze der Krystallochemie. 680 Naturwissenschaften, 14 477, (1926).10.1007/BF01507527Search in Google Scholar

[53] Jaeryeong Lee, Heeyoung Shin1, Jaechun Lee1, Hunsaeng Chung1, Qiwu Zhang and Fumio Saito, Materials Transactions, 44, 1457 (2003).10.2320/matertrans.44.1457Search in Google Scholar

[54] V Manivannan, P Parhi and Jonathon W Kramer, Bull. Mater. Sci., 31, 987 (2008).10.1007/s12034-008-0155-5Search in Google Scholar

[55] Lee J, Zhang Q and Saito F, Chem. Lett. 7, 700 (2001).10.1246/cl.2001.700Search in Google Scholar

[56] Lee J, Shin H, Lee J, Chung H, Zhang Q and Saito F Mater. Trans. 44, 1457, (2003).10.2320/matertrans.44.1457Search in Google Scholar

[57] Atsushi Okazaki, Yasutaka Suemune, Journal of the Physical Society of Japan, 16, 671 (1961).10.1143/JPSJ.16.671Search in Google Scholar

[58] Mats Johnsson and Peter Lemmens, Crystallography and Chemistry of Perovskites, (2007).10.1002/9780470022184.hmm411Search in Google Scholar

[59] M.M. J. Portier, A. Tressaud, J-L. Dupin et R. de Pape., Mat. Res. Bull. 4, 45, (1969).10.1016/0025-5408(69)90015-4Search in Google Scholar

[60] K. Knox, Acta Cryst. 14, 583, (1961)10.1107/S0365110X61001868Search in Google Scholar

[61] R. Fatehally, G. K. Shenoy, N. P. Sastry and R. Nagarajan, Phys. Lett. 25A, 454, (1967)10.1016/0375-9601(67)90077-1Search in Google Scholar

[62] E. N. Maslen, N. Spaldaccini, T. Ito, F. Marumo, K. Tanaka, Y. Satow, Acta Crystall. B 49, 632 (1993).10.1107/S0108768193002666Search in Google Scholar

[63] Munetaka Haida, and Kay Kohn, Journal of the Physical Society of Japan 40, 981 (1976).10.1143/JPSJ.40.981Search in Google Scholar

[64] M. Safa and B. K. Tanner, B. J. Garrard and B. M. Wanklyn, J. Crystal Growth 39, 243 (1977).10.1016/0022-0248(77)90271-8Search in Google Scholar

[65] M. P. J. Punkkinen, Solid State Communications 111, 477(1999).10.1016/S0038-1098(99)00239-2Search in Google Scholar

[66] A. S. Verma, Solid State Communications 158, 34, (2013).10.1016/j.ssc.2013.01.005Search in Google Scholar

[67] F. S. Galasso, Perovskites and High Tc Superconductors, Wiley, NewYork, (1990).Search in Google Scholar

[68] M. Kestigian, F. D. Leipziger, W. J. Croft et R. Guidoboni, Inorg. Chem. 5, 1462, (1966).10.1021/ic50042a044Search in Google Scholar

[69] O. Muller, R. Roy, The Major Ternary Structural Families, Springer, New York, (1974).10.1007/978-3-642-65706-1Search in Google Scholar

[70] Liu Liang, Lu Wencong, Chen Niany, Journal of Physics and Chemistry of Solids 65, 855 (2004)10.1016/j.jpcs.2003.08.021Search in Google Scholar

[71] A. S. Verma, Solid State Communications, 158, 34 (2013).10.1016/j.ssc.2013.01.005Search in Google Scholar

[72] A. S. Verma, A. Kumar and S. R. Bhardwaj, Physica Status Solidi B 245, 1520 (2008).10.1002/pssb.200844072Search in Google Scholar

[73] A. S. Verma and A. Kumar, J. Alloys and Compounds, 541, 210 (2012).10.1016/j.jallcom.2012.07.027Search in Google Scholar

[74] A. S. Verma and V. K. Jindal, J. Alloys and Compounds, 485, 514 (2012).10.1016/j.jallcom.2009.06.001Search in Google Scholar

[75] Joanna Kapusta, Philippe Daniel, and Alicja Ratuszna, Phys. Rev. B59, 14235 (1999).10.1103/PhysRevB.59.14235Search in Google Scholar

[76] Alicja Ratuszna, Joanna Kapusta, Phase Transitions 62, 181 (1997).10.1080/01411599708220068Search in Google Scholar

[77] Kunio Saiki. Resonance behaviour in canted antiferromagnet KMnF3. Journal of the Physical Society of Japan, 33, 1284 (1972).10.1143/JPSJ.33.1284Search in Google Scholar

[78] P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas & M. K. Crawford, Scientific Reports, 6, 35685 (2016).10.1038/srep35685507336427767049Search in Google Scholar

[79]: Madan Lal and Shikha Kapila, International Journal of Materials Science 12, 137 (2017).Search in Google Scholar

[80] Ruinian Hua, Zhihong Jia, Demin Xie, Chunshan Shi, Chemistry Letters, 31, 538 (2002).10.1246/cl.2002.538Search in Google Scholar

[81] Andréa Martin, Enrique S. Santiago, Erhard Kemnitz, and Nicola Pinna, ACS Appl. Mater. Interfaces, 11, 33132 (2019).10.1021/acsami.9b1065931429264Search in Google Scholar

[82] J. Ferré, B. Briat, R.H. Petit, R.V. Pisarev et J. Nouet, J. Phys. France, 5, 503 (1976).10.1051/jphys:01976003705050300Search in Google Scholar

[83] A. Oleaga, A. Salazar, D. Skrzypek, Journal of Alloys and Compounds, 629, 178 ( 2015).10.1016/j.jallcom.2014.12.237Search in Google Scholar

[84] S.L. Wang, W. L. Li, G. F. Wang, D.Y. Dong, J. J. Shi, X. Y. Li, P.G. Li, and W. H. Tang, Crystal structure and Electrical transport property of KMF3 (M= Mn, Co and Ni), Cambridge University Press.10.1017/S0885715613000316Search in Google Scholar

[85] R. Dovesi, F. Fava, F. C. Roetti and V. R. Saunders, Faraday Discuss 18, 569 (1997)Search in Google Scholar

[86] O. Beckman and K. Knox, Phys. Rev, 121, 376 (1961).10.1103/PhysRev.121.376Search in Google Scholar

[87] S. A. Kizhaev, and Markova, Phys. Solid State 53, 1851 (2011).10.1134/S1063783411090162Search in Google Scholar

[88] G. F. Du, J. Zuo, and O. Yang, Chin, J. Chem. Phys. 18, 569 (2005).Search in Google Scholar

[89] E. K. H Sajle, M. Zhang, and H. Zhang, J. Phys. Condens Matter 21, 33 (2009).10.1088/0953-8984/21/33/33540221828605Search in Google Scholar

[90] A. J. Heeger, O. Beckman, and A. M. Portis, Phys. Rev. B 25, 3538 (1961).Search in Google Scholar

[91] F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 5390 (1944).Search in Google Scholar

[92] Karlheinz Schwar, Peter Blaha, and S.B. Trickey, Molecular Physics 108, 21 (2019).Search in Google Scholar

[93] Blaha, P., Schwarz, K., Sorantin, and P. & Trickey, Comput. Phys. Commun. 59, 399 (1990).Search in Google Scholar

[94] Georg K. H. Madsen, Peter Blaha, Karlheinz Schwarz, and Lars Nordström, Physical Review B 64, 19, (2001).10.1103/PhysRevB.64.195134Search in Google Scholar

[95] The DFT+U: Approaches, Accuracy, and Applications, Open access peer-reviewed chapter, Sarah A. Tolba, Kareem M. Gameel, Basant A. Ali, Hossam A. Almossalami and Nageh K. Allam (2018).Search in Google Scholar

[96] Peter Blaha, Karlheinz Schwarz, Georg K. H. Madsen, Dieter Kvasnicka, Joachim Luitz, Robert Laskowski, Fabien Tran, and Laurence D. Marks, User’s Guide, WIEN2k (2019).Search in Google Scholar

[97] Burak Himmetoglu, Andrea Floris, Stefano de Gironcoli and Matteo Cococcioni, Quantum Chemistry, 114, 14, (2014).10.1002/qua.24521Search in Google Scholar

[98] M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005).10.1103/PhysRevB.71.035105Search in Google Scholar

[99] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5192 (1976).10.1103/PhysRevB.13.5188Search in Google Scholar

[100] G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, A. Delin, B. Johansson, Phys. Rev. B 76, 014107 (2007).10.1103/PhysRevB.76.014107Search in Google Scholar

[101] Hayatullah, G. Murtaza, R. Khenata, S. Naeem, M.N. Khalid, S. Mohammad, Chin. Phys. Lett. 30, 097101 (2013).Search in Google Scholar

[102] G. Pari, S. Mathi Jaya, and R. AsokamaniPhys. Rev. B 50, 8166 (1994).10.1103/PhysRevB.50.8166Search in Google Scholar

[103] Rune Søndenå, Svein Stølen, and P. Ravindran, Tor Grande, Neil L. Allan, Phys. Rev. B 75, 184105 (2007).10.1103/PhysRevB.75.184105Search in Google Scholar

[104] Rune Søndenå, P. Ravindran, Svein Stølen, Tor Grande, Michael Hanfland, Electronic structure and magnetic properties of cubic and hexagonal SrMnO3, Phys. Rev. B 74 (2006) 144102.Search in Google Scholar

[105] Dimov, N.; Nishimura, A.; Chihara, K.; Kitajou, A.; Gocheva, I. D.; Okada, S. Transition Metal NaMF3 Compounds as Model Systems (2013).Search in Google Scholar

[106] Chaplygin I, Seifert G, Gemming S, Laskowski R. Comput Mater Sci 44, 79, (2008).10.1016/j.commatsci.2008.01.028Search in Google Scholar

[108] C. Cros, R. Feurer et M. Poucliard, J. Fluorinr Chem., 7, 605 (1976).10.1016/S0022-1139(00)82477-XSearch in Google Scholar

[109] Roberto L. Moreiraa, and Anderson Dias; Comment on “Prediction of lattice constant in cubic perovskites, J. Phys. Chem. Solids 67, 1531 (2006).Search in Google Scholar

[110] Huggins, R. A. & Rabenau, S. Mater. Res. Bull. 13, 1315, (1978).10.1016/0025-5408(78)90122-8Search in Google Scholar

[111] Hayatullah, G. Murtaza R. Khenata, S. Muhammada, A. H. Reshak, Kin Mun Wongf, S. Bin Omran, Z. A. Alahmed, Computational Materials Science 85, 402 (2014).10.1016/j.commatsci.2013.12.054Search in Google Scholar

[112] M. Abdul, S. L. Yeon, Adv. Inf. Sci. Serv. Sci. 2, 3 (2010).Search in Google Scholar

[113] J. Silver, Journal of Fluorine Chemistry, 8, 527 (1976).10.1016/S0022-1139(00)81667-XSearch in Google Scholar

[114] A. Okazaki, Y. Suemune, T. Fuchikami, J. Phys. Soc. Jpn 14, 1823 (1959).10.1143/JPSJ.14.1823Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo