1. bookVolume 62 (2020): Issue 1 (December 2020)
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
access type Open Access

Structural Stability and Magnetic Ordering in BiFeO3 Perovskite Oxide: A Comparative Study GGA+U vs L(S)DA+U

Published Online: 16 Dec 2020
Volume & Issue: Volume 62 (2020) - Issue 1 (December 2020)
Page range: 52 - 70
Received: 03 Jun 2020
Accepted: 30 Jun 2020
Journal Details
License
Format
Journal
eISSN
2784-1057
First Published
15 Dec 2012
Publication timeframe
1 time per year
Languages
English
Abstract

Ab initio calculations of BiFeO3 magnetic perovskite are carried. Accurate density functional theory calculations were performed considering a U-Hubbard correction (DFT+U) to account for on-site Coulomb interactions of the 3d-Fe states. We have applied the Full-potential linearized augmented plane waves (FP-LAPW) method. Exchange-correlation effects are treated using the Local Spin Density approximation (L(S)DA+U) vs generalized gradient approximations (GGA+U). Equilibrium lattices agree very well with other theoretical and experimental data. The magnetization energy differences between Spin Up and Spin Dn states are small. Spin effect and magnetic moment obtained from subsequent (L(S)DA+U) and (GGA+U) calculations are also discussed in different magnetic configurations: The Ferromagnetic cubic phase (Pm-3m), The A-type Antiferromagnetic (P4/mmc) and The G-type Antiferromagnetic (Fm-3m). The nature of magnetism arises mainly from the Fe-site exhibiting a G-type antiferromagnetic ordering. The electronic structure shows that BiFeO3 has a metallic band gap. This multiferroic exhibit strong hybridization of the 3d-Fe and 2p-O orbitals. Therefore, the Multiferroic BiFeO3 perovskite has driven significant research interest due to their promising technological potential. It’s a good candidate for potential applications in spintronic, and to aid the development of the next generation of data storage and multi-functional technological devices.

Keywords

[1] Noura Hamdad, Superlattices and Microstructures 76, 425 (2014).10.1016/j.spmi.2014.10.004Search in Google Scholar

[2] M. Derras and N. Hamdad, Results in Physics 3, 61 (2013).10.1016/j.rinp.2013.04.001Search in Google Scholar

[3] M. Derras, N. Hamdad, M. Derras, A. Gessoum, Results in Physics 3, 219 (2013).10.1016/j.rinp.2013.09.011Search in Google Scholar

[4] Noura, Hamdad, Physica B 406, 1194 (2011).10.1016/j.physb.2010.11.018Search in Google Scholar

[5] Abbes Labdelli, Noura Hamdad, Results in Physics, 5, 38 (2015).10.1016/j.rinp.2014.10.004Search in Google Scholar

[6] L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J. F. Li and S. Zhang, Prog. Mater Sci. 102, 72 (2019).Search in Google Scholar

[7] L. Pálová, P. Chandra and K. M. Rabe, Phys. Rev. Lett. 104, 037202 (2010).Search in Google Scholar

[8] Erik Ekström, Arnaud le Febvrier, Daniele Fournier, Jun Lu, Vladimir-Lucian Ene, Ngo Van Nong, Fredrik Eriksson, Per Eklund and Biplab Paul, Journal of Materials Science 54, 8482 (2019).10.1007/s10853-019-03496-7Search in Google Scholar

[9] YangLiu, Vladimir Motalov, Stefan Baumann, Dmitry Sergeev, Michael Müller, Yoo Jung Sohn, Olivier Guillon, Journal of the European Ceramic Society, 39, 4874, (2019).10.1016/j.jeurceramsoc.2019.06.045Search in Google Scholar

[10] T. Ishihara, Springer Handbook of Electronic and Photonic Materials, 1, 405 (2017).Search in Google Scholar

[11] R.I. Eglitis, D. Vanderbilt, Phys. Rev. B 78, 155420 (2008).10.1103/PhysRevB.78.155420Search in Google Scholar

[12] H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012).Search in Google Scholar

[13] C. E. Deluque-Toro, D. A. Landínez-Téllez and J. Roa-Rojas, Revista, DYNA, 85, 27 (2018).10.15446/dyna.v85n205.68517Search in Google Scholar

[14] G. M. Taha, M. N. Rashed, M. S. El-Sadek and M. A. Moghazy, Nanopages 1, 11 (2019).10.1556/566.2017.0010Search in Google Scholar

[15] V. Singh, S. Sharma, M. M. Kumar, R. K. Kotnala, R. K. Dwivedi, Journal of Magnetism and Magnetic Materials 349, 264 (2014).10.1016/j.jmmm.2013.09.002Search in Google Scholar

[16] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Journal of Physics C: Solid State Physics 13, 1931 (1980).10.1088/0022-3719/13/10/012Search in Google Scholar

[17] I. Szafraniak, M. Potomska, B. Hilczer, Journal of the European Ceramic Society 27, 4399 (2007).10.1016/j.jeurceramsoc.2007.02.163Search in Google Scholar

[18] C. Tabares-Munoz, J. Rivera, A. Bezinges, A. Monnier, H. Schmid. Japanese Journal of Applied Physics 24, 105 (1985).10.7567/JJAPS.24S2.1051Search in Google Scholar

[19] C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, Journal of Crystal Growth 291, 135 (2006).10.1016/j.jcrysgro.2006.02.048Search in Google Scholar

[20] K. Suzuki, Y. Tokudome, H. Tsudad, T. Masahide, Applied Crystallography 49, 168 (2016).10.1107/S1600576715023845Search in Google Scholar

[21] S. Das, S. Rana, S. Mursalin, P. Rana, A. Sen, Sensors and Actuators B: Chemical 218, 122 (2015).10.1016/j.snb.2015.04.084Search in Google Scholar

[22] V. Fruth, L. Mitoseriu, D. Berger, A. Lanculescu, C. Matei, S. Preda, M. Zaharescu Progress in Solid State Chemistry 35, 193 (2007).10.1016/j.progsolidstchem.2007.01.019Search in Google Scholar

[23] S. Ghosh, S. Dasgupta, A. Sen, H. S. Maiti. J. Am. Ceram. Soc. 88, 1349 (2005).Search in Google Scholar

[24] J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integrated Ferroelectrics 126, 47 (2011).10.1080/10584587.2011.574986Search in Google Scholar

[25] Anoop Singh Yadav, Sammat Singh, Sunil Kumar Pandey, Rakesh Kumar, Anoop Singh Yadav et al., East African Scholars J Eng Comput Sci 1, 13 (2018).Search in Google Scholar

[26] E A Kotomin et al, J. Phys.: Conf. Ser. 117, 012019 (2008).Search in Google Scholar

[27] S. Piskunov, E. A. Kotomin, E. Heifets, Ab initio calculations of the atomic and electronic structures for ABO3 perovskite (001) surfaces (2004).10.1016/j.susc.2004.11.008Search in Google Scholar

[28] B. Akgenc, A. Kinaci, C. Tasseven, T. Cagin, Materials Chemistry and Physics 205, 315 (2018).10.1016/j.matchemphys.2017.11.026Search in Google Scholar

[29] Shiferaw Kuma and Menberu Mengesha Woldemariam, Advances in Condensed Matter Physics 12, 3176148 (2019).10.1155/2019/3176148Search in Google Scholar

[30] P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg and O. Eriksson, Phys. Rev. B 74, 224412 (2006).10.1103/PhysRevB.74.224412Search in Google Scholar

[31] R. Haumont, J. Kreisel and P. Bouvier, A Multinational Journal 79, 1043 (2006).10.1080/01411590601067342Search in Google Scholar

[32] V. G. Bhide and M. S. Multani, Solid State Commun. 3, 271 (1965).Search in Google Scholar

[33] J. M. Moreau, C. Michel, R. Gerson and W. J. James, J. Phys. Chem. Solids 32, 1315 (1971).10.1016/S0022-3697(71)80189-0Search in Google Scholar

[34] Y. N. Venevtsev and V. V. Gagulin, Inorg. Mater. 31, 797 (1995).Search in Google Scholar

[35] Ragnhild Sæterli, Sverre Magnus Selbach, Ponniah Ravindran, Tor Grande and Randi Holmestad, Phys. Rev. B 82, 064102 (2010).10.1103/PhysRevB.82.064102Search in Google Scholar

[36] F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).Search in Google Scholar

[37] J. Dzik, A. Lisinska-Czekaj, A. Zarycka, D. Czekaj, A rchives of Metallurgy and Materials, 58, 4 (2013).Search in Google Scholar

[38] A. Johari, Synthesis and characterization of bismuth ferrite Nanoparticles, AKGEC Journal of Technology 2, 0975 (2011).Search in Google Scholar

[39] Lei Bi, Alexander R. Taussig, Hyun-Suk Kim, Lei Wang, Gerald F. Dionne, D. Bono, K. Persson, Gerbrand Ceder and C. A. Ross, Phys. Rev. B 78, 104106 (2008).10.1103/PhysRevB.78.104106Search in Google Scholar

[40] J. Wang, Ph.D. thesis, University of Maryland (2005).Search in Google Scholar

[41] S. V. Kiselev, R. P. Ozerov and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963).Search in Google Scholar

[42] J. R. Teague, R. Gerson and W. J. James, Solid State Commun. 8, 1073 (1970).Search in Google Scholar

[43] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin and D. Viehland, Phys. Rev. B 69, 064114 (2004).10.1103/PhysRevB.69.064114Search in Google Scholar

[44] J. T. Heron, D. G. Schlom and R. Ramesh, App. Phys. Rev. 1, 021303 (2014).Search in Google Scholar

[45] C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401(R) (2005).10.1103/PhysRevB.71.060401Search in Google Scholar

[46] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).10.1103/PhysRevB.23.5048Search in Google Scholar

[47] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedreson, D. J. Singh and C. Fiolhais, Phys. Rev. B 43, 6671 (1992).10.1103/PhysRevB.46.6671Search in Google Scholar

[48] J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).Search in Google Scholar

[49] J. P. Perdew and Y. Wang, Phys. Rev. B 33, 8800 (1986).10.1103/PhysRevB.33.8800Search in Google Scholar

[50] J. P. Perdew in ‘Electronic Structure of Solids’, Academie Verlag, Berlin, 11 (1991).Search in Google Scholar

[51] J. P. Perdew and K. Burke, Int. J. Quantum Chem. 57, 309 (1996).Search in Google Scholar

[52] F. Tran and P. Blaha, Phys Rev. Lett. 102, 226401 (2009)10.1103/PhysRevLett.102.22640119658882Search in Google Scholar

[53] A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006).Search in Google Scholar

[54] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, K. Schwarz, Techn. University at Wien, Austria, 3, 9501031 (2001).Search in Google Scholar

[55] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar

[56] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.140.A1133Search in Google Scholar

[57] M. Cococcioni and S. de Gironcoli, PRB 71, 035105 (2005).10.1103/PhysRevB.71.035105Search in Google Scholar

[58] Peter Blaha, Karlheinz Schwarz, Georg K. H. Madsen, Dieter Kvasnicka, Joachim Luitz, Robert Laskowski, Fabien Tran and Laurence D. Marks, User’s Guide, WIEN2k (2019).Search in Google Scholar

[59] Burak Himmetoglu, Andrea Floris, Stefano de Gironcoli and Matteo Cococcioni, Quantum Chemistry 114, 14 (2014).10.1002/qua.24521Search in Google Scholar

[60] Fabien Tran and Peter Blaha, Phys. Rev. Materials 2, 120801 (2018).10.1103/PhysRevMaterials.2.120801Search in Google Scholar

[61] Philipp Haas, Fabien Tran, Peter Blaha and Karlheinz Schwarz, Phys. Rev. B 83, 205117 (2011).10.1103/PhysRevB.83.205117Search in Google Scholar

[62] E. Sjöstedt, L. Nordström, D. J. Singh, Solid State Commun. 114, 15 (2000).Search in Google Scholar

[63] Karlheinz. Schwarz, InTech, Chapter 10, 275 (2015).10.1017/9780511757495.030Search in Google Scholar

[64] C. Loschen, J. Carrasco, K.M. Neyman and F. Illas, Phys. Rev. B 75, 035115 (2007).10.1103/PhysRevB.75.035115Search in Google Scholar

[65] P. E. Blochl, O. Jepsen and O. K. Anderson, Phys. Rev. B 49, 16223 (1994).10.1103/PhysRevB.49.1622310010769Search in Google Scholar

[66] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5192 (1976).10.1103/PhysRevB.13.5188Search in Google Scholar

[67] R. S. Roth, Journal of Research of the National Bureau of Standards 58, 2736 (1957).10.6028/jres.058.010Search in Google Scholar

[68] Safari Amisi, Computational Condensed Matter, 20, e00383 (2019).10.1016/j.cocom.2019.e00383Search in Google Scholar

[69] Hans-Conrad zur Loye, Qingbiao Zhao, Daniel E. Bugaris and W. Michael Chance, Cryst. Eng. Comm, 14, 23 (2012).10.1039/C1CE05788JSearch in Google Scholar

[70] M.K. Lee, C.B. Eom, J. Lettieri, I. W. Scrymgeour, D.G. Schlom, W. Tian, X. Q. Pan, P. A. Ryan, F. Tsui, Appl. Phys. Lett. 78, 329 (2000).Search in Google Scholar

[71] Hitoshi Yusa, Nagayoshi Sata and Yasuo Ohishi, American Mineralogist, 92, 648 (2007).10.2138/am.2007.2314Search in Google Scholar

[72] Roger H. Mitchell, Mark D. Welch, Anton R. Chakhmouradian, Supplementary materials 81, 411 (2017).10.1180/minmag.2016.080.156Search in Google Scholar

[73] R Ubic, Subodh Ganesanpotti, Journal of Alloys and Compounds, 488, 374 (2009).10.1016/j.jallcom.2009.08.139Search in Google Scholar

[74] J. M. Longo, P. M. Raccah, J. B. Goodenough, J. Appl. Phys. 39, 1327 (1968).Search in Google Scholar

[75] W. Zhang, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, T. Hayashi, M. Azuma M. Takano, Journal of Solid State Chemistry 179, 4052 (2006).10.1016/j.jssc.2006.08.008Search in Google Scholar

[76] Markus Kubicek, Alexander H. Borkac and Jennifer L. M. Rupp, Mater. Chem. A 5, 11983 (2017).10.1039/C7TA00987ASearch in Google Scholar

[77] Sodena, S. Stolen, P. Ravindran, T. Grande, Phys. Rev. B 75, 214307 (2007).10.1103/PhysRevB.75.184105Search in Google Scholar

[78] F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 5390 (1944).10.1073/pnas.30.9.244107870416588651Search in Google Scholar

[79] Alison J. Hatt and Nicola A. Spaldin, Phys. Rev. B 81, 054109 (2010).Search in Google Scholar

[80] Florian Johann, Alessio Morelli, Daniel Biggemann, Miryam Arredondo and Ionela Vrejoiu, Phys. Rev. B 84, 094105 (2011).10.1103/PhysRevB.84.094105Search in Google Scholar

[81] P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg and O. Eriksson, Phys. Rev. B 74, 224412 (2006).10.1103/PhysRevB.74.224412Search in Google Scholar

[82] F. Sugawara, S. Ihda, Y. Syono and S. Akimoto, Journal Physical Society 25, 1553 (1968).10.1143/JPSJ.25.1553Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo