1. bookVolume 14 (2021): Issue 1 (December 2021)
Journal Details
First Published
12 Dec 2015
Publication timeframe
1 time per year
access type Open Access

The role of r esistant starch in human nutrition

Published Online: 17 Dec 2021
Volume & Issue: Volume 14 (2021) - Issue 1 (December 2021)
Page range: 57 - 83
Journal Details
First Published
12 Dec 2015
Publication timeframe
1 time per year

In this paper, we examine the role and effect of resistant starch (RS) in human nutrition; further, the structure and properties of RS, the food sources based on resistance to digestion in the colon, and the physiological effects of RS are described. The nutritional value of RS, the effect of RS on short-chain fatty acid (SCFA) production, the relationships between RS and colon function, and the relationships between food starch, dietary fibre, and RS content and colon cancer development are reviewed. It has been shown that the use of RS in foods may have some benefits. Resistant starch, digestion of resistant-starch-containing foods have a number of health benefits for colon function but appear to have less effect on lipid-glucose metabolism. It has a positive effect on colon bacterial activity, promotes the growth of beneficial microbes, and reduces the activity of enzymes that are harmful to the digestive system. Under the influence of RS, increased SCFA production lowers the pH of the colon and stimulates bile acid secretion. The decreased pH protects against colon cancer and inhibits the conversion of primary and secondary bile acids, which are cytotoxic to intestinal cells. At the end of the review article, the relationships between RS and the colon microflora, its use as a prebiotic, and the relationship between RS and glucose metabolism are analysed. It was found that the use of RS in the diet might have benefits as it shortens the time it takes food to pass through the colon and increases the amount of stool. It was also found that the physicochemical properties of foods can directly affect the amount of RS and thereby the blood glucose levels and insulin response.


[1] Ambalam, P., Raman, M., Purama, R. K., Doble, M., Probiotics, prebiotics and colorectal cancer prevention. Best Practice & Research: Clinical Gastroenterology, 30. 1. (2016) 119–131. Search in Google Scholar

[2] Andoh, A., Tsujikawa, T., Fujiyama, Y., Role of dietary fiber and short-chain fatty acids in the colon. Current Pharmaceutical Design, 9. 4. (2003) 347–358.10.2174/138161203339197312570825 Search in Google Scholar

[3] Asp, N. G., Nutritional classification and analysis of food carbohydrates. The American Journal of Clinical Nutrition, 59. 3. (1994) 679–681.10.1093/ajcn/59.3.679Sa8116549 Search in Google Scholar

[4] Asp, N. G., Van Amelsvoort, J. M. M., Hautvast, J. G. A. J., Nutritional implications of resistant starch. Nutrition Research Reviews, 9. (1996) 1–31.10.1079/NRR1996000419094263 Search in Google Scholar

[5] Behall, K. M., Hallfrisch, J., Plasma glucose and insulin reduction after consumption of breads varying in amylose content. European Journal of Clinical Nutrition, 56. (2002) 913–920.10.1038/sj.ejcn.160141112209381 Search in Google Scholar

[6] Bendiks, Z. A., Knudsen, K. E. B., Keenan, M. J., Marco, M. L., Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research (New York, N.Y.), 77. (2020) 12–28.10.1016/j.nutres.2020.02.009729565932251948 Search in Google Scholar

[7] Bindels, L. B. et al., Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 5. 12. (2017).10.1186/s40168-017-0230-5529482328166818 Search in Google Scholar

[8] Bingham, S. A., Day, N. E., Luben, R., Ferrari, P., Slimani, N., Norat, T., Riboli, E., Dietary fibre in food and protection against colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC): An observational study. The Lancet (British Edition), 361. (2003) 1496–1501. Search in Google Scholar

[9] Bird, A. R., Brown, I. L., Topping, D. L., Starches, resistant starches, the gut microflora and human health. Current Issues in Intestinal Microbiology, 1. (2000) 25–37. Search in Google Scholar

[10] Bird, A. R., Vuaran, M., Brown, I., Topping, D. L., Two high-amylose maize starches with different amounts of resistant starch vary in their effects on fermentation, tissue and digesta mass accretion, and bacterial populations in the large bowel of pigs. British Journal of Nutrition, 97. (2007) 134–144.10.1017/S000711450725043317217569 Search in Google Scholar

[11] Birkett, A. M., Mathers, J. C., Jones, G. P., Walker, K. Z., Roth, M. J., Muir, J. G., Changes to the quantity and processing of starchy foods in a Western diet can increase polysaccharides escaping digestion and improve in vitro fermentation variables. British Journal of Nutrition, 84. (2000) 63–72.10.1017/S0007114500001240 Search in Google Scholar

[12] Birt, D. F., Boylston, T., Hendrich, S., Jane, J., Hollis, J., Li, L., Whitley, E. M., Resistant starch: Promise for improving human health. Advances in Nutrition (Bethesda, Md.), 4. (2013) 587–601.10.3945/an.113.004325382350624228189 Search in Google Scholar

[13] Brown, I., Complex carbohydrates and resistant starch. Nutrition Reviews, 54. 11. (1996) 115–119.10.1111/j.1753-4887.1996.tb03830.x9110587 Search in Google Scholar

[14] Brown, I., Applications and uses of resistant starch. Journal of AOAC International, 87. (2004) 727–732.10.1093/jaoac/87.3.727 Search in Google Scholar

[15] Brown, I., McNaught, K. J., Moloney, E., Hi-maize™: New directions in starch technology and nutrition. Food Australia, 47. (1995) 272–275. Search in Google Scholar

[16] Brown, I., Warhurst, M., Arcot, J., Playne, M., Illman, R. J., Topping, D. L., Fecal numbers of Bifidobacteria are higher in pigs fed Bifidobacterium longum with a high amylose cornstarch than with a low amylose cornstarch. The Journal of Nutrition, 127. (1997) 1822–1827.10.1093/jn/127.9.18229278566 Search in Google Scholar

[17] Brown, M. A., Storlien, L. H., Brown, I. L., Higgins, J. A., Cooking attenuates the ability of high-amylose meals to reduce plasma insulin concentrations in rats. British Journal of Nutrition, 90. (2003) 823–827.10.1079/BJN2003958 Search in Google Scholar

[18] Byrnes, S. E., Miller, J. C., Denyer, G. S., Amylopectin starch promotes the development of insulin resistance in rats. The Journal of Nutrition, 125. (1995) 1430–1437. Search in Google Scholar

[19] Caderni, G., Luceri, C., Lancioni, L., Dolara, P., Dietary sucrose, glucose, fructose, and starches affect colonic functions in rats. Nutrition and Cancer, 25. (1996) 179–186.10.1080/016355896095144408710687 Search in Google Scholar

[20] Cassand, P., Maziere, S., Champ, M., Meflah, K., Bornet, F., Narbonne, J., Effects of resistant starch- and vitamin A-supplemented diets on the promotion of precursor lesions of colon cancer in rats. Nutrition and Cancer, 27. (1997) 53–59.10.1080/016355897095145018970182 Search in Google Scholar

[21] Cassidy, A., Bingham, S. A., Cummings, J. H., Starch intake and colorectal cancer risk: An international comparison. British Journal of Cancer, 69. (1994) 937–942. Search in Google Scholar

[22] Chambers, E. S., Preston, T., Frost, G., Morrison, D. J., Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7. 4. (2018) 198–206.10.1007/s13668-018-0248-8624474930264354 Search in Google Scholar

[23] Champ, M. M., Physiological aspects of resistant starch and in vivo measurements. Journal of AOAC International, 87. (2004) 749–755.10.1093/jaoac/87.3.749 Search in Google Scholar

[24] Champ, M., Langkilde, A., Brouns, F., Kettlitz, B., Le Bail Collet, Y., Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews, 16. (2003a) 71–82.10.1079/NRR20025419079938 Search in Google Scholar

[25] Champ, M., Langkilde, A., Brouns, F., Kettlitz, B., Le Bail Collet, Y., Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labelling. Nutrition Research Reviews, 16. (2003b) 143–161.10.1079/NRR20036419087387 Search in Google Scholar

[26] Champ, M., Martin, L., Noah, L., Gratas, M., Analytical methods for resistant starch. In: Complex Carbohydrates in Foods, (1999) 169–187. Search in Google Scholar

[27] Christl, S., Murgatroyd, P., Gibson, G., Cummings, J., Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology (New York, N.Y. 1943), 102. (1992) 1269–1277. Search in Google Scholar

[28] Conlon, M. A., Bird, A. R., Interactions of dietary fibre and resistant starch with oil on genetic damage in the rat colon. Asia Pacific Journal of Clinical Nutrition, 12. (2003) S54. Search in Google Scholar

[29] Conway, P. L., Prebiotics and human health: The state-of-the-art and future perspectives. Naringsforskning, 45. (2001) 13–21. Search in Google Scholar

[30] Crittenden, R. G., Morris, L. F., Harvey, M. L., Tran, L. T., Mitchell, H. L., Playne, M. J., Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. Journal of Applied Microbiology, 90. (2001) 268–278.10.1046/j.1365-2672.2001.01240.x11168730 Search in Google Scholar

[31] Cummings, J. H., Beatty, E. R., Kingman, S. M., Bingham, S. A., Englyst, H. N., Digestion and physiological properties of resistant starch in the human large bowel. British Journal of Nutrition, 75. (1996) 733–747.10.1079/BJN19960177 Search in Google Scholar

[32] Dai, F., Chau, C., Classification and regulatory perspectives of dietary fiber. Journal of Food and Drog Analysis, 25. 1. (2017) 37–42.10.1016/j.jfda.2016.09.006 Search in Google Scholar

[33] Demigne, C., Remesy, C., Morand, C., Resistant starches and lipid metabolism. Journal of Food Science and Technology, 17. (2001) 159–168.10.1201/9780203904220-11 Search in Google Scholar

[34] Devries, J. W., Dietary fiber: The influence of definition on analysis and regulation. Journal of AOAC International, 87. (2004) 682–706. Search in Google Scholar

[35] Ebihara, K., Shiraishi, R., Okuma, K., Hydroxypropyl-modified potato starch increases fecal bile acid excretion in rats. The Journal of Nutrition, 128. (1998) 848–854.10.1093/jn/128.5.848 Search in Google Scholar

[36] Eerlingen, R. C., Delcour, J. A., Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science, 22. (1995) 129–138.10.1016/0733-5210(95)90042-X Search in Google Scholar

[37] EFSA. Overview of nutritional benchmarks. The values of the EU population, as described in the European Food Safety Authority (EFSA) on dietary products, nutrition and allergies (NDA). (2017). Search in Google Scholar

[38] Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Tiller, S. A., Starch production and industrial use. Journal of the Science of Food and Agriculture, 77. (1998) 289–311.10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D Search in Google Scholar

[39] Englyst, K. N., Englyst, H. N., Hudson, G. J., Cole, T. J., Cummings, J. H., Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response. The American Journal of Clinical Nutrition, 69. (1999) 448–454. Search in Google Scholar

[40] Englyst, H. N., Cummings, J. H., Measurement of starch fermentation in the human large intestine. Canadian Journal of Physiology and Pharmacology, 69. (1991) 121–129.10.1139/y91-018 Search in Google Scholar

[41] Englyst, H. N., Kingman, S. M., Cummings, J. H., Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46. (1992) 533–550. Search in Google Scholar

[42] Erbersdobler, F. H., Factors affecting uptake and utilization of macro nutri ents. In: Southgate, D., Johnson, I. T., Fenwick, G. R. (eds.), Nutrient availability: Chemical and biological aspects. Cambridge: Royal Society of Chemistry. (1989) 330–339. Search in Google Scholar

[43] Ferguson, L. R., Tasman-Jones, C., Englyst, H., Harris, P. J., Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutrition and Cancer, 36. (2000) 230–237.10.1207/S15327914NC3602_13 Search in Google Scholar

[44] Fernández, J., Moreno, F. J., Olano, A., Clemente, A., Villar, C. J., Lombó, F., Galactooligosaccharides derived from lactulose protects against colorectal cancer development in an animal model. Frontiers in Microbiology, 9. 2004. (2018) 1–14.10.3389/fmicb.2018.02004 Search in Google Scholar

[45] Fuentes-Zaragoza, E., Sánchez-Zapata, E., Sendra, E., Sayas, E., Navarro, C., Fernández-López, J., Pérez-Alvarez, J. A., Resistant starch as prebiotic: A review. Starch – Stärke, 63. (2011) 406–415.10.1002/star.201000099 Search in Google Scholar

[46] Gibson, G. R., Roberfroid, M. B., Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125, (1995) 1401–1412. Search in Google Scholar

[47] Gutiérrez, T. J., Tovar, J., Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends in Food Science & Technology, 109. (2021) 711–724. Search in Google Scholar

[48] Haenen, D., Zhang, J., Souza Da Silva, C., Bosch, G., Meer, V. D., Arkel, V. J., Hooiveld, G. J., A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. The Journal of Nutrition, 143. (2013) 274–283.10.3945/jn.112.169672 Search in Google Scholar

[49] Hamer, H. M. H., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., Brummer, R. J. M., Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics, 27. (2008) 104–119. Search in Google Scholar

[50] Henningsson, Å. M., Margareta, E., Nyman, G. L., Björck, I. M. E., Influences of dietary adaptation and source of resistant starch on short-chain fatty acids in the hindgut of rats. British Journal of Nutrition, 89. (2003) 319–327.10.1079/BJN2003782 Search in Google Scholar

[51] Higgins, J. A., Brand Miller, J. C., Gareth, A., Denver, S., Biochemical and molecular roles of nutrients. Development of insulin resistance in the rat is dependent on the rate of glucose absorption from the diet. The Journal of Nutrition, 126. 3. (1996) 596–602.10.1093/jn/126.3.596 Search in Google Scholar

[52] Hosseini, E., Grootaert, C., Verstraete, W., Van de Wiele, T., Propionate as a health promoting microbial metabolite in the human gut. Nutrition Reviews, 69. (2011) 245–258.10.1111/j.1753-4887.2011.00388.x Search in Google Scholar

[53] Jones, J., Update on defining dietary fiber. Cereal Foods World, 45. (2000) 219–220. Search in Google Scholar

[54] Kim, W. K., Chung, M. I. K., Kang, N. E., Kim, M. H., Park, O. J., Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. The Journal of Nutritional Biochemistry, 14. (2003) 166–172.10.1016/S0955-2863(02)00281-4 Search in Google Scholar

[55] Kleessen, B., Stoof, G., Rgen Proll, J., Schmiedl, D., Noack, J., Blaut, M., Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. Journal of Animal Science, 75. (1997) 2453–2462.10.2527/1997.7592453x9303464 Search in Google Scholar

[56] Le Leu, R. K., Brown, I. L., Hu, Y., Young, G. P., Effect of resistant starch on genotoxin-induced apoptosis, colonic epithelium, and lumenal contents in rats. Carcinogenesis, 24. (2003) 1347–1352.10.1093/carcin/bgg09812807738 Search in Google Scholar

[57] Liversey, G., Energy value of resistant starch. In: Proceedings of the Concluding Plenary Meeting of EURESTA: Wageningen, Netherlands. (1994) 56–62. Search in Google Scholar

[58] Lockyer, S., Nugent, A. P., Health effects of resistant starch. Nutrition Bulletin, 42. 1. (2017) 10–41.10.1111/nbu.12244 Search in Google Scholar

[59] Lunn, J., Buttriss, J. L., Carbohydrates and dietary fibre. Nutrition Bulletin, 32. (2007) 21–64.10.1111/j.1467-3010.2007.00616.x Search in Google Scholar

[60] Macfarlane, S., Macfarlane, G. T., Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62. (2003) 67–72.10.1079/PNS200220712740060 Search in Google Scholar

[61] Martin, L. J. M., Dumon, H. J. W., Lecannu, G., Champ, M. M. J., Potato and high-amylose maize starches are not equivalent producers of butyrate for the colonic mucosa. British Journal of Nutrition, 84. (2000) 689–696.10.1017/S0007114500002038 Search in Google Scholar

[62] Mathé, D., Riottot, M., Rostaqui, N., Sacquet, E., Navarro, N., Lécuyer, B., Lutton, C., Effect of amylomaize starch on plasma lipoproteins of lean and obese zucker rats. Journal of Clinical Biochemistry and Nutrition, 14. (1993) 17–24.10.3164/jcbn.14.17 Search in Google Scholar

[63] Mazière, S., Meflah, K., Tavan, E., Champ, M., Narbonne, J., Cassand, P., Effect of resistant starch and/or fat-soluble vitamins A and E on the initiation stage of aberrant crypts in rat colon. Nutrition and Cancer, 31. (1998) 168–177.10.1080/016355898095146999795968 Search in Google Scholar

[64] McCleary, B. V., An integrated procedure for the measurement of total dietary fiber (including resistant starch), non-digestible oligosaccharides and available carbohydrates. Analytical and Bioanalytical Chemistry, 389. (2007) 291.10.1007/s00216-007-1389-617619181 Search in Google Scholar

[65] McCleary, B. V., Cox, J., Ivory, R., Delaney, E., Definition and analysis of dietary fiber in grain products. In: Beta, T., Camire, M. E. (eds.), Grain-based functional foods: Carbohydrate and phytochemical components (food chemistry, function and analysis). Chapter 6. Royal Society of Chemistry. (2018) 103–126.10.1039/9781788012799-00103 Search in Google Scholar

[66] McCleary, B. V., DeVries, J. W., Rader, J. I., Cohen, G., Prosky, L., Mugford, D. C., Okuma, K., Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. Journal of AOAC International, 93. (2010) 221–233. Search in Google Scholar

[67] McCleary, B. V., McLoughlin, C., Charmier, L., McGeough, P., Measurement of available carbohydrates, digestible and resistant starch in food ingredients and products. Cereal Chemistry, 97. (2019) 114–137.10.1002/cche.10208 Search in Google Scholar

[68] McCleary, B. V., McNally, M., Rossiter, P., Measurement of resistant starch by enzymic digestion in starch samples and selected plant materials: Collaborative study. Journal of AOAC International, 2002. 85. (2002) 1103–1111. Search in Google Scholar

[69] McCleary, B. V., Rossiter, P., Measurement of novel dietary fibers. Journal of AOAC International, 87. (2004) 707–717.10.1093/jaoac/87.3.707 Search in Google Scholar

[70] McCleary, B. V., Sloane, N., Draga, A., Determination of total dietary fibre and available carbohydrates: A rapid integrated procedure that simulates in vivo digestion. Starch – Stärke, 67. (2015) 860–883. Search in Google Scholar

[71] Metzler-Zebeli, B. U. et al., Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs. Animal, 13. 1. (2019) 64–73.10.1017/S175173111800100329745350 Search in Google Scholar

[72] Muir, J. G., Yeow, E. G. W., Keogh, J., Pizzey, C., Bird, A. R., Sharpe, K., Macrae, F. A., Combining wheat bran with resistant starch has more beneficial effects on fecal indexes than does wheat bran alone. The American Journal of Clinical Nutrition, 79. (2004) 1020–1028.10.1093/ajcn/79.6.102015159232 Search in Google Scholar

[73] Niba, L. L., Processing effects on susceptibility of starch to digestion in some dietary starch sources. International Journal of Food Sciences and Nutrition, 54. (2003) 97–109.10.1080/0963748031000042038 Search in Google Scholar

[74] Noah, L., Krempf, M., Lecannu, G., Maugère, P., Champ, M., Bioavailability of starch and postprandial changes in splanchnic glucose metabolism in pigs. American Journal of Physiology – Endocrinology and Metabolism, 278. (2000) 181–188.10.1152/ajpendo.2000.278.2.E18110662700 Search in Google Scholar

[75] Nugent, A. P., Health properties of resistant starch. Nutrition Bulletin, 30. (2005) 27–54.10.1111/j.1467-3010.2005.00481.x Search in Google Scholar

[76] Phillips, J., Muir, J. G., Birkett, A., Lu, Z. X., Jones, G. P., O’Dea, K., Young, G. P., Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. The American Journal of Clinical Nutrition, 62. (1995) 121–130.10.1093/ajcn/62.1.1217598054 Search in Google Scholar

[77] Pierre, F., Perrin, P., Champ, M., Bornet, F., Meflah, K., Menanteau, J., Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in min mice. Cancer Research, 57. (1997) 225–228. Search in Google Scholar

[78] Polakowski, C. B., Kato, M., Preti, V. B., Schieferdecker, M. E. M., Campos, A. C. L., Impact of the preoperative use of synbiotics in colorectal cancer patients: A prospective, randomized, doubleblind, placebo-controlled study. Nutrition, 58. (2019) 40–46. Search in Google Scholar

[79] Prosky, L., Asp, N. G., Furda, I., DeVries, J. W., Schweizer, T. F., Harland, B. F., Determination of total dietary fiber in foods and food products: Collaborative study. Journal – Association of AOAC International, 68. (1985) 677–679. Search in Google Scholar

[80] Rabbani, G. H., Teka, T., Zaman, B., Majid, N., Khatun, M., Fuchs, G. J., Clinical studies in persistent diarrhea: Dietary management with green banana or pectin in Bangladeshi children. Gastroenterology (New York, N.Y. 1943), 121. (2001) 554–560. Search in Google Scholar

[81] Ramakrishna, B. S., Venkataraman, S., Srinivasan, P., Dash, P., Young, G. P., Binder, H. J., Amylase-resistant starch plus oral rehydration solution for cholera. New England Journal of Medicine, 342. 5. (2000) 308–313.10.1056/NEJM20000203342050210655529 Search in Google Scholar

[82] Rosado, J. L., Morales, M., Allen, L. H., Energy and macronutrient bioavailability from rural and urban Mexican diets. In: Southgate, D., Johnson, I., Fenwick, G. R., (eds.), Nutrient availability: Chemical and biological aspects. Cambridge: Royal Society of Chemistry. (1987) 327–329. Search in Google Scholar

[83] Roy, C. C., Kien, C. L., Bouthillier, L., Levy, E., Short-chain fatty acids: Ready for prime time? Nutrition in Clinical Practice, 21. (2006) 351–366.10.1177/011542650602100435116870803 Search in Google Scholar

[84] Sajilata, M. G., Singhal, R. S., Kulkarni, P. R., Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety, 5. (2006) 1–17.10.1111/j.1541-4337.2006.tb00076.x33412740 Search in Google Scholar

[85] Sakamoto, J., Nakaji, S., Sugawara, K., Iwane, S., Munakata, A., Comparison of resistant starch with cellulose diet on 1,2-dimethylhydrazine-induced colonic carcinogenesis in rats. Gastroenterology, 110. (1996) 116–120.10.1053/gast.1996.v110.pm85368468536846 Search in Google Scholar

[86] Segain, J., Butyrate inhibits inflammatory responses through NF kappa B inhibition: Implications for Crohn’s disease. Gut, 47. (2000) 397–403. Search in Google Scholar

[87] Sharma, A., Yadav, B. S., Ritika, Resistant starch: Physiological roles and food applications. Food Reviews International, 24. (2008) 193–234. Search in Google Scholar

[88] Shen, D., Bai, H., Li, Z., Yu, Y., Zhang, H., Chen, L., Positive effects of resistant starch supplementation on bowel function in healthy adults: A systematic review and meta-analysis of randomized controlled trials. International Journal of Food Sciences and Nutrition, 68. 2. (2017) 149–157. Search in Google Scholar

[89] Silvester, K. R., Englyst, H. N., Cummings, J. H., Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. American Journal of Nutrition, 62. (1995) 403–411.10.1093/ajcn/62.2.4037625349 Search in Google Scholar

[90] Silvi, S., Rumney, C. J., Cresci, A., Rowland, I. R., Resistant starch modifies gut microflora and microbial metabolism in human flora associated rats inoculated with faeces from Italian and UK donors. Journal of Applied Microbiology, 86. (1999) 521–530.10.1046/j.1365-2672.1999.00696.x10196757 Search in Google Scholar

[91] Singh, V. et al., Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell, 175. 3. (2018) 679–694.10.1016/j.cell.2018.09.004623285030340040 Search in Google Scholar

[92] Sleeth, M. L., Thompson, E. L., Ford, H. E., Zac-Varghese, S. E. K., Frost, G., Free fatty acid receptor 2 and nutrient sensing: A proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutrition Research Reviews, 23. (2010) 135–145. Search in Google Scholar

[93] Snelson, M., Jong, J., Manolas, D., Kok, S., Louise, A., Stern, R., Kellow, N. J., Metabolic effects of resistant starch type 2: A systematic literature review and meta-analysis of randomized controlled trials. Nutrients, 11. 8. (2019) 1833.10.3390/nu11081833672369131398841 Search in Google Scholar

[94] Southgate, D. A. T., Conceptual issues concerning the assessment of nutrient bioavailability. In: Southgate, D. A. T. (ed.), Nutrient availability: Chemical and biological aspect. Cambridge: Royal Society of Chemistry. (1989) 10–12. Search in Google Scholar

[95] Thilakarathna, W. W., Langille, M. G., Rupasinghe, H. V., Polyphenol-based prebiotics and synbiotics: Potential for cancer chemoprevention. Current Opinion in Food Science, 20. (2018) 51–57.10.1016/j.cofs.2018.02.011 Search in Google Scholar

[96] Thorup, I., Meyer, O., Kristiansen, E., Effect of potato starch, corn starch and sucrose on aberrant crypt foci in rats exposed to azoxymethane. Anticancer Research, 15. (1995) 2101–2105. Search in Google Scholar

[97] Tian, S., Sun, Y., Influencing factor of resistant starch formation and application in cereal products: A review. International Journal of Biological Macromolecules, 149. (2020) 424–431.10.1016/j.ijbiomac.2020.01.26432004604 Search in Google Scholar

[98] Toden, S., Bird, A. R., Topping, D. L., Conlon, M. A., Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutrition and Cancer, 51. (2005) 45–51.10.1207/s15327914nc5101_715749629 Search in Google Scholar

[99] Topping, D. L., Clifton, P. M., Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81. (2001) 1031–1064. Search in Google Scholar

[100] Topping, D. L., Fukushima, M., Bird, A. R., Resistant starch as a prebiotic and synbiotic: State of the art. Proceedings of the Nutrition Society, 62. 1. (2003) 171–176.10.1079/PNS2002224 Search in Google Scholar

[101] Van Der Meulen, J., Bakker, J. G. M., Smits, B., De Visser, H., Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. British Journal of Nutrition, 78. (1997a) 533–544.10.1079/BJN199701739389882 Search in Google Scholar

[102] Van Der Meulen, J., Bakker, J. G. M., Smits, B., De Visser, H., Effect of resistant starch on net portal-drained viscera flux of glucose, volatile fatty acids, urea, and ammonia in growing pigs. Journal of Animal Science, 75. (1997b) 2697–2704.10.2527/1997.75102697x9331872 Search in Google Scholar

[103] Van Gorkom, B. A. P, Karrenbeld, A., Van der Sluis, T., Zwart, N., Van der Meer, R., De Vries, E. G. E, Kleibeuker, J. H., Calcium or resistant starch does not affect colonic epithelial cell proliferation throughout the colon in adenoma patients: A randomized controlled trial. Nutrition and Cancer, 43. (2002) 31–38. Search in Google Scholar

[104] Wang, X., Conway, P. L., Brown, I. L., Evans, A. J., In vitro utilization of amylopectin and high-amylose maize (amylomaize) starch granules by human colonic bacteria. Applied and Environmental Microbiology, 65. (1999) 4848–4854.10.1128/AEM.65.11.4848-4854.19999165310543795 Search in Google Scholar

[105] Williamson, S. L. H., Kartheuser, A., Coaker, J., Kooshkghazi, M. D., Fodde, R., Burn, J., Mathers, J. C., Intestinal tumorigenesis in the Apc1638N mouse treated with aspirin and resistant starch for up to 5 months. Carcinogenesis (New York), 20. (1999) 805–810.10.1093/carcin/20.5.80510334197 Search in Google Scholar

[106] Wiseman, C. E., Higgins, J. A., Denyer, G. S., Brand, J. C., Biochemical and molecular roles of nutrients: Amylopectin starch induces nonreversible insulin resistance in Rats. Journal of Nutrition, 126. 2. (1996) 410–415. Search in Google Scholar

[107] Yang, X., Darko, K. O., Huang, Y., He, C., Yang, H., He, S., Li, J., Hocher, B., Yin, Y., Resistant starch regulates gut microbiota: Structure, biochemistry and cell signalling. Cellular Physiology and Biochemistry, 42. (2017) 306–312. Search in Google Scholar

[108] Younes, H., Levrat, M. A., Demigné, C., Rémésy, C., Resistant starch is more effective than cholestyramine as a lipid-lowering agent in the rat. Lipids, 30. 9. (1995) 847–853.10.1007/BF025339618577229 Search in Google Scholar

[109] Young, G., McIntyre, A., Albert, V., Folino, M., Muir, J., Gibson, P., Wheat bran suppresses potato starch-potentiated colorectal tumorigenesis at the aberrant crypt stage in a rat model. Gastroenterology, 110. (1996) 508–514.10.1053/gast.1996.v110.pm85665988566598 Search in Google Scholar

[110] Young, G. P., Le Leu, R. K., Resistant starch and colorectal neoplasia. Journal of AOAC International, 87. (2004) 775–786.10.1093/jaoac/87.3.775 Search in Google Scholar

[111] Zhao, X., Andersson, M., Andersson, R., Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry, 251. (2018) 58–63.10.1016/j.foodchem.2018.01.02829426424 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo