1. bookVolume 29 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
access type Open Access

Lp-dual three mixed quermassintegrals

Published Online: 08 Jul 2021
Volume & Issue: Volume 29 (2021) - Issue 2 (June 2021)
Page range: 265 - 274
Received: 06 Aug 2020
Accepted: 31 Aug 2020
Journal Details
License
Format
Journal
eISSN
1844-0835
First Published
17 May 2013
Publication timeframe
1 time per year
Languages
English
Abstract

In the paper, the concept of Lp-dual three-mixed quermassintegrals is introduced. The formula for the Lp-dual three-mixed quermassintegrals with respect to the p-radial addition is proved. Inequalities of Lp-Minkowski, and Brunn-Minkowski type for the Lp-dual three-mixed quermassintegrals are established. The new Lp-Minkowski inequality is obtained that generalize a family of Minkowski type inequalities. The Lp-Brunn-Minkowski inequality is used to obtain a series of Brunn-Minkowski type inequalities.

Keywords

MSC 2010

[1] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin-New york, 1988.10.1007/978-3-662-07441-1 Search in Google Scholar

[2] R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1996. Search in Google Scholar

[3] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405.10.1090/S0273-0979-02-00941-2 Search in Google Scholar

[4] E. Grinberg, G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc,. 78 (1999), 77-115.10.1112/S0024611599001653 Search in Google Scholar

[5] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232–261.10.1016/0001-8708(88)90077-1 Search in Google Scholar

[6] E. Lutwak, Dual mixed volumes, Pacific J. Math., 58 (1975), 531–538.10.2140/pjm.1975.58.531 Search in Google Scholar

[7] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Second Edition, 2014. Search in Google Scholar

[8] W. Wang, G. Leng, Lp-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177–188. Search in Google Scholar

[9] D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz Lϕ affine and geominimal surface areas, J. Math. Anal. Appl., 443 (2016), 352–371.10.1016/j.jmaa.2016.05.027 Search in Google Scholar

[10] C.-J. Zhao, The dual logarithmic Aleksandrov-Fenchel inequality, Balkan J. Geom. Appl., 25 (2020), 157–169. Search in Google Scholar

[11] C.-J. Zhao, Orlicz dual mixed volumes, Results Math., 68 (2015), 93–104.10.1007/s00025-014-0424-0 Search in Google Scholar

[12] C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Mathematicum, 30 (4) (2018), 929–945.10.1515/forum-2017-0174 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo