Open Access

LSTM-Based Discrimination of Date Fruit (Phoenix dactylifera L.) Based on Selected Convolutional Neural Network Features

, ,  and   
Feb 15, 2025

Cite
Download Cover

Abi Sen, A. A., Bahbouh, N. M., Alkhodre, A. B., Aldhawi, A. M., Aldham, F. A., & Aljabri, M. I., (2020). A classification algorithm for date fruits. In 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 235–239). IEEE. Search in Google Scholar

Al-Dashti, Y. A., Holt, R. R., Keen, C. L., & Hackman, R. M. (2021). Date palm fruit (Phoenix dactylifera): Effects on vascular health and future research directions. International journal of molecular sciences, 22(9), 4665. Search in Google Scholar

Altaheri, H., Alsulaiman, M., & Muhammad, G. (2019). Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access, vol. 7, pp. 117115–117133. Search in Google Scholar

Alturki, A. S., Islam, M., Alsharekh, M. F., Almanee, M. S., & Ibrahim, A. H. (2020). Date fruits grading and sorting classification algorithm using colors and shape features. Int. J. Eng. Res. Technol, 13(8), 1917–1920. Search in Google Scholar

Aslan, M. F., Sabanci, K., Durdu, A., & Unlersen, M. F. (2022). COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization. Computers in biology and medicine, 142, 105244. Search in Google Scholar

Aslan, M. F., Unlersen, M. F., Sabanci, K., & Durdu, A. (2021). CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection. Applied Soft Computing, 98, 106912. Search in Google Scholar

Cong, Q., Feng, Z., Li, F., Xiang, Y., Rao, G., Tao, C. (2018). XA-BiLSTM: a deep learning approach for depression detection in imbalanced data. In 2018 IEEE international conference on bioinformatics and biomedicine (BIBM) (pp. 1624–1627). IEEE. Search in Google Scholar

Faisal, M., Albogamy, F., Elgibreen, H., Algabri, M., & Alqershi, F. A. (2020). Deep learning and computer vision for estimating date fruits type, maturity level, and weight. IEEE Access, 8, 206770-206782. Search in Google Scholar

FAO STAT. https://www.fao.org/faostat/fr/#data/QCL (consulted by 21 October 2022). Search in Google Scholar

Ghnimi, S., Umer, S., Karim, A., & Kamal-Eldin, A. (2017). Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS journal, 6, 1–10. Search in Google Scholar

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). Search in Google Scholar

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. Search in Google Scholar

Hossain, M.S., Muhammad, G., & Amin, S.U. (2016). Improving consumer satisfaction in smart cities using edge computing and caching: A case study of date fruits classification," Future Generation Computer Systems, vol. 88, pp. 333–341. Search in Google Scholar

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. Search in Google Scholar

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708). Search in Google Scholar

Idowu, A. T., Igiehon, O. O., Adekoya, A. E., & Idowu, S. (2020). Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications. AIMS Agriculture and Food, 5(4), 734–755. Search in Google Scholar

Kamal-Eldin, A., & Ghnimi, S. (2018). Classification of date fruit (Phoenix dactylifera, L.) based on chemometric analysis with multivariate approach. Journal of Food Measurement and Characterization, 12(2), 1020–1027. Search in Google Scholar

Khalid, S., Khalid, N., Khan, R. S., Ahmed, H., & Ahmad, A. (2017). A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends in food science & technology, 63, 60–69. Search in Google Scholar

Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992 (pp. 249–256). Morgan Kaufmann. Search in Google Scholar

Koklu, M., Kursun, R., Taspinar, Y. S., & Cinar, I. (2021). Classification of date fruits into genetic varieties using image analysis, Mathematical Problems in Engineering, 2021, 1–13. Search in Google Scholar

Manickavasagan, A., Essa, M. M., & Sukumar, E. (2012). Dates: production, processing, food, and medicinal values. CRC Press. Search in Google Scholar

Muhammad, G., (2014). Automatic date fruit classification by using local texture descriptors and shape-size features. In 2014 European Modelling Symposium, 174–179, IEEE. Search in Google Scholar

Muhammad, G., (2015). Date fruits classification using texture descriptors and shape-size features. Engineering Applications of Artificial Intelligence, 37, 361–367. Search in Google Scholar

Nasiri, A., Taheri-Garavand, A., & Zhang, Y.D. (2019). Image-based deep learning automated sorting of date fruit. Postharvest biology and technology, 153, 133–141. Search in Google Scholar

Noutfia, Y., & Ropelewska, E. (2023a). Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ (Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements. Agriculture, 13(1), 74. Search in Google Scholar

Noutfia, Y., & Ropelewska, E. (2023b). Innovative Models Built Based on Image Textures Using Traditional Machine Learning Algorithms for Distinguishing Different Varieties of Moroccan Date Palm Fruit (Phoenix dactylifera L.). Agriculture, 13(1), 26. Search in Google Scholar

Noutfia, Y., Alem, C., & Filali Zegzouti, Y. (2019). Assessment of physico-chemical and sensory properties of two date (Phoenix dactylifera L.) cultivars under commercial cold storage conditions. Journal of Food Processing and Preservation, 43(12), e14228. Search in Google Scholar

O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. Search in Google Scholar

Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66. Search in Google Scholar

Pérez-Pérez, B.D., Garcia Vazquez, J. P., Salomón-Torres, R. (2021). Evaluation of convolutional neural networks’ hyperparameters with transfer learning to determine sorting of ripe medjool dates. Agriculture, 11(2), 115. Search in Google Scholar

Rahmani, A. H., Aly, S. M., Ali, H., Babiker, A. Y., & Srikar, S. (2014). Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity. International journal of clinical and experimental medicine, 7(3), 483. Search in Google Scholar

Ropelewska, E., Cai, X., Zhang, Z., Sabanci, K., Aslan, M. F. (2022b). Benchmarking machine learning approaches to evaluate the cultivar differentiation of plum (Prunus domestica L.) kernels. Agriculture, 12(2), 285. Search in Google Scholar

Ropelewska, E., Sabanci, K., & Aslan, M. F. (2022a). Authentication of tomato (Solanum lycopersicum L.) cultivars using discriminative models based on texture parameters of flesh and skin images. European Food Research and Technology, 248(8), 1959–1976. Search in Google Scholar

Ropelewska, E., Sabanci, K., & Aslan, M.F. (2021). Discriminative power of geometric parameters of different cultivars of sour cherry pits determined using machine learning. Agriculture, 11(12), 1212. Search in Google Scholar

Sabanci, K., Aslan, M. F., & Durdu, A. (2020). Bread and durum wheat classification using wavelet-based image fusion. Journal of the Science of Food and Agriculture, 100(15), 5577–5585. Search in Google Scholar

Sabanci, K., Aslan, M. F., Ropelewska, E., Unlersen, M. F., & Durdu, A. (2022). A novel convolutional-recurrent hybrid network for sunn pest–damaged wheat grain detection. Food Analytical Methods, 15(6), 1748–1760. Search in Google Scholar

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520). Search in Google Scholar

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9). Search in Google Scholar

Thareja, G., Mathew, S., Mathew, L. S., Mohamoud, Y. A., Suhre, K., & Malek, J. A. (2018). Genotypingby-sequencing identifies date palm clone preference in agronomics of the State of Qatar. PLoS one, 13(12), e0207299. Search in Google Scholar

Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 85, 189–203. Search in Google Scholar

Zielinska, M., Ropelewska, E., & Markowski, M. (2017). Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT-Food Science and Technology, 85, 204–211. Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Industrial Chemistry, other, Food Science and Technology