This work is licensed under the Creative Commons Attribution 4.0 International License.
Bowling, T., et al., 2019. Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118.BowlingT.2019Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 CeresIcarus320110118Search in Google Scholar
Bu, C., et al., 2019. Stability of hydrated carbonates on Ceres. Icarus 320, 136–149.BuC.2019Stability of hydrated carbonates on CeresIcarus320136149Search in Google Scholar
Castillo, J.C., et al. 2019. Conditions for the preservations of brines inside Ceres. Geophys. Res. Lett. 46, 1963–1972.CastilloJ.C.2019Conditions for the preservations of brines inside CeresGeophys. Res. Lett.4619631972Search in Google Scholar
Ciarnello, M., et al. 2017. Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy & Astrophysics, 598, A130.CiarnelloM.2017Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn missionAstronomy & Astrophysics598A130.Search in Google Scholar
Czechowski, L., 2023 a. Some remarks on the origin of the faculae in Occator crater on Ceres. Submitted.CzechowskiL.2023 aSome remarks on the origin of the faculae in Occator crater on CeresSubmitted.Search in Google Scholar
Czechowski, L., 2023 b. Origin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07. Bulletin of the Americam Astronomical Society Vol. 55. No. 8 e-id 2023n8i102p07. https://baas.aas.org/pub/2023n8i102p07/release/1CzechowskiL.2023 bOrigin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07Bulletin of the Americam Astronomical Society558e-id 2023n8i102p07. https://baas.aas.org/pub/2023n8i102p07/release/1Search in Google Scholar
Czechowski, L., et al., 2023. The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this process. Icarus, doi.org/10.1016/j.icarus.2023.115473.CzechowskiL.2023The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this processIcarusdoi.org/10.1016/j.icarus.2023.115473.Search in Google Scholar
Czechowski, L., 2014. Some remarks on the early evolution of Enceladus. Planet. Sp. Sci., 104, 185–199, doi.org/10.1016/j.pss.2014.09.010.CzechowskiL.2014Some remarks on the early evolution of EnceladusPlanet. Sp. Sci.104185199doi.org/10.1016/j.pss.2014.09.010.Search in Google Scholar
Czechowski, L., and K. J. Kossacki, 2012. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217, 130–143.CzechowskiL.KossackiK. J.2012Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convectionIcarus2012217130143Search in Google Scholar
Domagal-Goldman, S.D., et al. 2016. The Astrobiology Primer v2.0. Astrobiology 16(8): 561–653.Domagal-GoldmanS.D.2016The Astrobiology Primer v2.0.Astrobiology168561653Search in Google Scholar
Ermakov, A.I. et al., 2017. Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res., 18 October 2017 https://doi.org/10.1002/2017JE005302.ErmakovA.I.2017Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn SpacecraftJ. Geophys. Res.18October2017https://doi.org/10.1002/2017JE005302.Search in Google Scholar
Hargitai, H., and Kereszturi, A., 2015, Encyclopedia of Planetary Landforms. ISBN 978-1-4614-3133-6. Berlin: Springer-Verlag, 2015.HargitaiH.KereszturiA.2015Encyclopedia of Planetary LandformsISBN 978-1-4614-3133-6.BerlinSpringer-Verlag2015Search in Google Scholar
Hörz, F., 1982. Ejecta of the Ries Crater, Germany. Geological Implications of Impacts of Large Asteroids and Comets on the Earth, eds Leon T. Silver, Peter H. Schultz. https://doi.org/10.1130/SPE190-p39HörzF.1982Ejecta of the Ries Crater, GermanyGeological Implications of Impacts of Large Asteroids and Comets on the EarthedsSilverLeon T.SchultzPeter H.https://doi.org/10.1130/SPE190-p39Search in Google Scholar
Gritsevich, M.I., 2009. Determination of parameters of meteor bodies based on flight observational data. Advances in Space Research 44, 323–336.GritsevichM.I.2009Determination of parameters of meteor bodies based on flight observational dataAdvances in Space Research44323336Search in Google Scholar
Gustavo, C., et al., 2017. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets, Icarus, 289, 42–55, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2017.02.006.ims.GustavoC.2017Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanetsIcarus2894255ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2017.02.006.ims.Search in Google Scholar
Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500.MeloshH.J.2011Planetary surface processesCambridge Univ. Press.500Search in Google Scholar
Moilanen, J., et al., 2021. Determination of strewn fields for meteorite falls. Monthly Notices of the Royal Astronomical Society, volume 503, 3, 3337–3350, https://doi.org/10.1093/mnras/stab586MoilanenJ.2021Determination of strewn fields for meteorite fallsMonthly Notices of the Royal Astronomical Society503333373350https://doi.org/10.1093/mnras/stab586Search in Google Scholar
Nathues, A., et al. 2022. Brine residues and organics in the Urvara basin on Ceres. Nature Communications 13, 927. https://doi.org/10.1038/s41467-022-28570-8.NathuesA.2022Brine residues and organics in the Urvara basin on CeresNature Communications13927https://doi.org/10.1038/s41467-022-28570-8.Search in Google Scholar
Neesemann, A., et al., 2019. The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach. Icarus 320, 60–82.NeesemannA.2019The various ages of Occator crater, Ceres: results of a comprehensive synthesis approachIcarus3206082Search in Google Scholar
Palomba, E., et al., 2019. Compositional differences among bright spots on the Ceres surface. Icarus 320 (2019) 202–212.PalombaE.2019Compositional differences among bright spots on the Ceres surfaceIcarus320(2019)202212Search in Google Scholar
Park, R.S.; et al., 2019. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus. 319: 812–827. doi:10.1016/j.icarus.2018.10.024.ParkR.S.2019High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging DataIcarus31981282710.1016/j.icarus.2018.10.024Open DOISearch in Google Scholar
Qing-Ming Tan, 2011. Dimensional Analysis. Springer, London. ISBN 978-3-642-19233-3Qing-MingTan2011Dimensional AnalysisSpringerLondonISBN 978-3-642-19233-3Search in Google Scholar
Raponi, A., et al., 2019. Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus 320, 83–96.RaponiA.2019Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chloridesIcarus3208396Search in Google Scholar
Ruesch, O., et al., 2019. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48.RueschO.2019Bright carbonate surfaces on Ceres as remnants of salt-rich water fountainsIcarus3203948Search in Google Scholar
Ruesch, O., et al., 2016. Cryovolcanism on Ceres. Science 353, 6303. DOI: 10.1126/science.aaf4286.RueschO.2016Cryovolcanism on CeresScience353630310.1126/science.aaf4286Open DOISearch in Google Scholar
Schenk, P., et al., 2020. Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary process. Nature Communications 11, 3679, https://www.nature.com/articles/s41467-020-17184-7.SchenkP.2020Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary processNature Communications113679https://www.nature.com/articles/s41467-020-17184-7.Search in Google Scholar
Schröder, S.E., et al., 2021. Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation. Nature Communications. 12, 274. https://doi.org/10.1038/s41467-020-20494-5.SchröderS.E.2021Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimationNature Communications12274https://doi.org/10.1038/s41467-020-20494-5.Search in Google Scholar
Scully, J.E.C., et al. 2020. The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications 11, 3680. https://doi.org/10.1038/s41467-020-15973-8.ScullyJ.E.C.2020The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusionNature Communications113680https://doi.org/10.1038/s41467-020-15973-8.Search in Google Scholar
Silber, E.A, et al., 2018. Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Adv. Space Res., 62, 3, 489–532.SilberE.A2018Physics of meteor generated shock waves in the Earth’s atmosphere – A reviewAdv. Space Res.623489532Search in Google Scholar
Stein, N., et al., 2019. The formation and evolution of bright spots on Ceres. Icarus 320, 188–201.SteinN.2019The formation and evolution of bright spots on CeresIcarus320188201Search in Google Scholar
Sturm, S., et al., 2013. The Ries impact, a double-layer rampart crater on Earth. Geology 41 (5): 531–534. doi: https://doi.org/10.1130/G33934.1.SturmS.2013The Ries impact, a double-layer rampart crater on EarthGeology415531534doi: https://doi.org/10.1130/G33934.1.Search in Google Scholar
Thomas, E.C., et al., 2018. Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus 320, 150–158.ThomasE.C.2018Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spotsIcarus320150158Search in Google Scholar
Turcotte D.L. and G. Schubert, 2002, Geodynamics, Cambridge Univ. Press, pp. 456.TurcotteD.L.SchubertG.2002GeodynamicsCambridge Univ. Press456Search in Google Scholar
Vickery, A., 1986. Effect of an impact-generated gas cloud on the acceleration of solid ejecta. J. Geophys. Res., 91, B14, 14139–14160, https://doi.org/10.1029/JB091iB14p14139.VickeryA.1986Effect of an impact-generated gas cloud on the acceleration of solid ejectaJ. Geophys. Res.91B141413914160https://doi.org/10.1029/JB091iB14p14139.Search in Google Scholar