Acceso abierto

Numerical Model of Formation of Ejecta Faculae on Ceres

  
31 dic 2024

Cite
Descargar portada

Bowling, T., et al., 2019. Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus 320, 110–118. BowlingT. 2019 Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres Icarus 320 110 118 Search in Google Scholar

Bu, C., et al., 2019. Stability of hydrated carbonates on Ceres. Icarus 320, 136–149. BuC. 2019 Stability of hydrated carbonates on Ceres Icarus 320 136 149 Search in Google Scholar

Castillo, J.C., et al. 2019. Conditions for the preservations of brines inside Ceres. Geophys. Res. Lett. 46, 1963–1972. CastilloJ.C. 2019 Conditions for the preservations of brines inside Ceres Geophys. Res. Lett. 46 1963 1972 Search in Google Scholar

Ciarnello, M., et al. 2017. Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astronomy & Astrophysics, 598, A130. CiarnelloM. 2017 Spectrophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission Astronomy & Astrophysics 598 A130. Search in Google Scholar

Czechowski, L., 2023 a. Some remarks on the origin of the faculae in Occator crater on Ceres. Submitted. CzechowskiL. 2023 a Some remarks on the origin of the faculae in Occator crater on Ceres Submitted. Search in Google Scholar

Czechowski, L., 2023 b. Origin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07. Bulletin of the Americam Astronomical Society Vol. 55. No. 8 e-id 2023n8i102p07. https://baas.aas.org/pub/2023n8i102p07/release/1 CzechowskiL. 2023 b Origin of the Bright Ejecta (Faculae) on Ceres. 55 Annual Meeting of the Division for Planetary Sciences, id. 102.07 Bulletin of the Americam Astronomical Society 55 8 e-id 2023n8i102p07. https://baas.aas.org/pub/2023n8i102p07/release/1 Search in Google Scholar

Czechowski, L., et al., 2023. The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this process. Icarus, doi.org/10.1016/j.icarus.2023.115473. CzechowskiL. 2023 The formation of cone chains in the Chryse Planitia region on Mars and the thermodynamic aspects of this process Icarus doi.org/10.1016/j.icarus.2023.115473. Search in Google Scholar

Czechowski, L., 2014. Some remarks on the early evolution of Enceladus. Planet. Sp. Sci., 104, 185–199, doi.org/10.1016/j.pss.2014.09.010. CzechowskiL. 2014 Some remarks on the early evolution of Enceladus Planet. Sp. Sci. 104 185 199 doi.org/10.1016/j.pss.2014.09.010. Search in Google Scholar

Czechowski, L., and K. J. Kossacki, 2012. Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection. Icarus, 2012, 217, 130–143. CzechowskiL. KossackiK. J. 2012 Thermal convection in the porous methane-soaked regolith in Titan: Finite amplitude convection Icarus 2012 217 130 143 Search in Google Scholar

Domagal-Goldman, S.D., et al. 2016. The Astrobiology Primer v2.0. Astrobiology 16(8): 561–653. Domagal-GoldmanS.D. 2016 The Astrobiology Primer v2.0. Astrobiology 16 8 561 653 Search in Google Scholar

Ermakov, A.I. et al., 2017. Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft. J. Geophys. Res., 18 October 2017 https://doi.org/10.1002/2017JE005302. ErmakovA.I. 2017 Constraints on Ceres' Internal Structure and Evolution From Its Shape and Gravity Measured by the Dawn Spacecraft J. Geophys. Res. 18 October 2017 https://doi.org/10.1002/2017JE005302. Search in Google Scholar

Hargitai, H., and Kereszturi, A., 2015, Encyclopedia of Planetary Landforms. ISBN 978-1-4614-3133-6. Berlin: Springer-Verlag, 2015. HargitaiH. KereszturiA. 2015 Encyclopedia of Planetary Landforms ISBN 978-1-4614-3133-6. Berlin Springer-Verlag 2015 Search in Google Scholar

Hörz, F., 1982. Ejecta of the Ries Crater, Germany. Geological Implications of Impacts of Large Asteroids and Comets on the Earth, eds Leon T. Silver, Peter H. Schultz. https://doi.org/10.1130/SPE190-p39 HörzF. 1982 Ejecta of the Ries Crater, Germany Geological Implications of Impacts of Large Asteroids and Comets on the Earth eds SilverLeon T. SchultzPeter H. https://doi.org/10.1130/SPE190-p39 Search in Google Scholar

Gritsevich, M.I., 2009. Determination of parameters of meteor bodies based on flight observational data. Advances in Space Research 44, 323–336. GritsevichM.I. 2009 Determination of parameters of meteor bodies based on flight observational data Advances in Space Research 44 323 336 Search in Google Scholar

Gustavo, C., et al., 2017. Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets, Icarus, 289, 42–55, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2017.02.006.ims. GustavoC. 2017 Vaporization and thermodynamics of forsterite-rich olivine and some implications for silicate atmospheres of hot rocky exoplanets Icarus 289 42 55 ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2017.02.006.ims. Search in Google Scholar

Melosh, H.J., 2011. Planetary surface processes. Cambridge Univ. Press., pp. 500. MeloshH.J. 2011 Planetary surface processes Cambridge Univ. Press. 500 Search in Google Scholar

Moilanen, J., et al., 2021. Determination of strewn fields for meteorite falls. Monthly Notices of the Royal Astronomical Society, volume 503, 3, 3337–3350, https://doi.org/10.1093/mnras/stab586 MoilanenJ. 2021 Determination of strewn fields for meteorite falls Monthly Notices of the Royal Astronomical Society 503 3 3337 3350 https://doi.org/10.1093/mnras/stab586 Search in Google Scholar

Nathues, A., et al. 2022. Brine residues and organics in the Urvara basin on Ceres. Nature Communications 13, 927. https://doi.org/10.1038/s41467-022-28570-8. NathuesA. 2022 Brine residues and organics in the Urvara basin on Ceres Nature Communications 13 927 https://doi.org/10.1038/s41467-022-28570-8. Search in Google Scholar

Neesemann, A., et al., 2019. The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach. Icarus 320, 60–82. NeesemannA. 2019 The various ages of Occator crater, Ceres: results of a comprehensive synthesis approach Icarus 320 60 82 Search in Google Scholar

Palomba, E., et al., 2019. Compositional differences among bright spots on the Ceres surface. Icarus 320 (2019) 202–212. PalombaE. 2019 Compositional differences among bright spots on the Ceres surface Icarus 320 (2019) 202 212 Search in Google Scholar

Park, R.S.; et al., 2019. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus. 319: 812–827. doi:10.1016/j.icarus.2018.10.024. ParkR.S. 2019 High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data Icarus 319 812 827 10.1016/j.icarus.2018.10.024 Open DOISearch in Google Scholar

Qing-Ming Tan, 2011. Dimensional Analysis. Springer, London. ISBN 978-3-642-19233-3 Qing-MingTan 2011 Dimensional Analysis Springer London ISBN 978-3-642-19233-3 Search in Google Scholar

Raponi, A., et al., 2019. Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus 320, 83–96. RaponiA. 2019 Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides Icarus 320 83 96 Search in Google Scholar

Ruesch, O., et al., 2019. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus 320, 39–48. RueschO. 2019 Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains Icarus 320 39 48 Search in Google Scholar

Ruesch, O., et al., 2016. Cryovolcanism on Ceres. Science 353, 6303. DOI: 10.1126/science.aaf4286. RueschO. 2016 Cryovolcanism on Ceres Science 353 6303 10.1126/science.aaf4286 Open DOISearch in Google Scholar

Schenk, P., et al., 2020. Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary process. Nature Communications 11, 3679, https://www.nature.com/articles/s41467-020-17184-7. SchenkP. 2020 Raymond Impact heat driven volatile redistribution at Occator crater on Ceres as comparative planetary process Nature Communications 11 3679 https://www.nature.com/articles/s41467-020-17184-7. Search in Google Scholar

Schröder, S.E., et al., 2021. Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation. Nature Communications. 12, 274. https://doi.org/10.1038/s41467-020-20494-5. SchröderS.E. 2021 Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation Nature Communications 12 274 https://doi.org/10.1038/s41467-020-20494-5. Search in Google Scholar

Scully, J.E.C., et al. 2020. The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications 11, 3680. https://doi.org/10.1038/s41467-020-15973-8. ScullyJ.E.C. 2020 The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion Nature Communications 11 3680 https://doi.org/10.1038/s41467-020-15973-8. Search in Google Scholar

Silber, E.A, et al., 2018. Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Adv. Space Res., 62, 3, 489–532. SilberE.A 2018 Physics of meteor generated shock waves in the Earth’s atmosphere – A review Adv. Space Res. 62 3 489 532 Search in Google Scholar

Stein, N., et al., 2019. The formation and evolution of bright spots on Ceres. Icarus 320, 188–201. SteinN. 2019 The formation and evolution of bright spots on Ceres Icarus 320 188 201 Search in Google Scholar

Sturm, S., et al., 2013. The Ries impact, a double-layer rampart crater on Earth. Geology 41 (5): 531–534. doi: https://doi.org/10.1130/G33934.1. SturmS. 2013 The Ries impact, a double-layer rampart crater on Earth Geology 41 5 531 534 doi: https://doi.org/10.1130/G33934.1. Search in Google Scholar

Thomas, E.C., et al., 2018. Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots. Icarus 320, 150–158. ThomasE.C. 2018 Kinetic effect on the freezing of ammonium-sodium-carbonate-chloride brines and implications for the origin of Ceres’ bright spots Icarus 320 150 158 Search in Google Scholar

Turcotte D.L. and G. Schubert, 2002, Geodynamics, Cambridge Univ. Press, pp. 456. TurcotteD.L. SchubertG. 2002 Geodynamics Cambridge Univ. Press 456 Search in Google Scholar

Vickery, A., 1986. Effect of an impact-generated gas cloud on the acceleration of solid ejecta. J. Geophys. Res., 91, B14, 14139–14160, https://doi.org/10.1029/JB091iB14p14139. VickeryA. 1986 Effect of an impact-generated gas cloud on the acceleration of solid ejecta J. Geophys. Res. 91 B14 14139 14160 https://doi.org/10.1029/JB091iB14p14139. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geociencias, Geociencias, otros