Open Access

The effect of raw, hydrobarothermally treated and fermented rapeseed cake on plasma biochemical parameters, total tract digestibility and gut function in laying hens


Cite

Ahmadi M. (2016). The effect of different levels of rapeseed meal with and without enzyme on the performance and the serum level of triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) in broiler chickens. Iran. J. Appl. Anim. Sci., 6: 203–209. Search in Google Scholar

Ahmed A., Zulkifli I., Farjam A.S., Abdullah N., Liang J.B. (2014). Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens. Ital. J. Anim. Sci., 13: 3032. Search in Google Scholar

Antonissen G., Eeckhaut V., Van Driessche K., Onrust L., Haesebrouck F., Ducatelle R., Moore R.J., Van Immerseel F. (2016). Microbial shifts associated with necrotic enteritis. Avian Pathol., 45: 308–312. Search in Google Scholar

AOAC (2007). Official Methods of Analysis of AOAC International, 18th ed. Association of Official Analytical Chemists, Washington, DC, USA. Search in Google Scholar

Apajalahti J., Vienola K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed Sci. Technol., 221: 323–330. Search in Google Scholar

Beaud D., Tailliez P., Anba-Mondolon J. (2005). Genetic characterization of the glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology, 151: 2323–2330. Search in Google Scholar

Chabanon G., Chevalot I., Framboisier X., Chenu S., Marc I. (2007). Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem., 42: 1419–1428. Search in Google Scholar

Chiang L., Lu W.Q., Piao X.S., Hu J.K., Gong L.M., Thacker P.A. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Aust. J. Anim. Sci., 23: 263–271. Search in Google Scholar

Chibowska M., Smulikowska S., Pastuszewska B. (2000). Metabolisable energy value of rapeseed meal and its fractions for chickens as affected by oil and fibre content. J. Anim. Feed Sci., 9: 371–378. Search in Google Scholar

Czech A., Grela E.R., Kiesz M., Kłys S. (2020). Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci., 20: 535–550. Search in Google Scholar

Dahiya D., Nigam P.S. (2022). Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Ferment, 8: 303. De Moreno de LeBlanc A., Perdigo G. (2005). Reduction of glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell, 29: 15–24. Search in Google Scholar

Di Carlo G., Autore G., Izzo A.A., Maiolino P., Mascolo N., Viola P., Diurno M.V., Capasso F. (1993). Inhibition of intestinal motility and secretion by flavonoids in mice and rats: structure-activity relationships J. Pharm. Pharmacol., 45: 1054–1059. Search in Google Scholar

Drażbo A., Ognik K., Zaworska A., Ferenc K., Jankowski J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Sci., 97: 3910–3920. Search in Google Scholar

Drażbo A., Juśkiewicz J., Józefiak A., Konieczka P. (2020). The fermentation process improves the nutritional value of rapeseed cake for turkeys – effects on performance, gut bacterial population and its fermentative activity. Animals, 10: 1711. Search in Google Scholar

Englyst H.N., Cummings J.H. (1984). Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, 109: 937–942. Search in Google Scholar

Englyst H.N., Cummings J.H. (1988). Improved method for the determination of dietary fiber as non-starch polysaccharides in plant foods. J. AOAC Int., 71: 808–814. Search in Google Scholar

Elbaz A.M. (2021). Effects of diet containing fermented canola meal on performance, blood parameters, and gut health of broiler chickens. J. World Poult. Res., 11: 01–07. Search in Google Scholar

European Food Safety Authority (2008). Glucosinolates as undesirable substances in animal feed. EFSA J., 590: 1–76. Search in Google Scholar

Fazhi X., Lvmu L., Jiaping X., Kun Q., Zhide Z., Zhangyi L. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian-Aust. J. Anim. Sci., 24: 678–684. Search in Google Scholar

Feng D., Zuo J. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. Proc. 12th International Rapeseed Congress, Wuhan, China, pp. 265–270. Search in Google Scholar

Feng J., Liu X., Liu Y.Y., Xu Z.R., Lu Y.P. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol., 134: 235–242. Search in Google Scholar

Fenwick G.R., Spinks E.A., Wilkinson A.P., Heany R.K., Legoy M.A. (1986). Effect of processing on the antinutrient content of rape seed. J. Sci. Food Agric., 37: 735–741. Search in Google Scholar

Fu Z., Su G., Yang H., Sun Q., Zhong T., Wang Z. (2021). Effects of dietary rapeseed meal on growth performance, carcass traits, serum parameters, and intestinal development of geese. Animals, 11: 1488. Search in Google Scholar

Gąsiorek E., Wilk M. (2011). Possibilities of utilizing the solid byproducts of biodiesel production – a review. Pol. J. Chem. Technol., 13: 58–62. Search in Google Scholar

Goodarzi Boroojeni F., Kozłowski K., Jankowski J., Senz M., Wisniewska M., Boros D., Drażbo A., Zentek J. (2018). Fermentation and enzymatic treatment of pea for turkey nutrition. Anim. Feed Sci. Technol., 237: 78–88. Search in Google Scholar

Haug W., Lantzsch H.J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric., 34: 1423–1426. Search in Google Scholar

Hill F.N., Anderson D.L. (1958). Comparison of metabolizable energy and productive energy determinations with determinations with growing chicks. J. Nutr., 64: 587–603. Search in Google Scholar

Hofírek B., Haas D. (2001). Comparative studies of ruminal fluid collected by oral tube or by puncture of the caudorental ruminal sac. Acta Vet. Brno., 70: 27–33. Search in Google Scholar

Hu Y., Wang Y., Li A., Wang Z., Zhang X., Yun T., Qiu L., Yin Y. (2016). Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol., 27: 182–193. Search in Google Scholar

Hy-Line Brown Commercial Layers (2018). Management Guide. Accessed Jan. 2019. https://www.hyline.com. Search in Google Scholar

Jakobsen G.V., Jensen B.B., Knudsen K.E.B., Canibe N. (2015). Improving the nutritional value of rapeseed cake and wheat dried distillers grains with soluble by addition of enzymes during liquid fermentation. Anim. Feed Sci. Technol., 208: 198–213. Search in Google Scholar

Jia W., Mikulski D., Rogiewicz A., Zduńczyk Z., Jankowski J., Slominski B.A. (2012). Low-fiber canola. Part 2. Nutritive value of the meal. J. Agric. Food Chem., 60: 12231–12237. Search in Google Scholar

Juśkiewicz J., Zduńczyk Z. (2002). Lactulose-induced diarrhoea in rats: effects on caecal development and activities of microbial enzymes. Comp. Biochem. Phys. A., 133: 411–417. Search in Google Scholar

Keum Y.S., Jeong W.S., Kong A.N. (2004). Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res., 555: 191–202. Search in Google Scholar

Kocher A., Choct M., Porter M.., Broz J. (2000). The effects of enzyme addition to broiler diets containing high concentrations of canola or sunflower meal. Poultry Sci., 79: 1767–1774. Search in Google Scholar

Konieczka P., Mikulski D., Ognik K., Juśkiewicz J., Zduńczyk Z., Jankowski J. (2021). Increased dietary inclusion levels of lysine are more effective than arginine in supporting the functional status of the gut in growing turkeys. Animals, 11: 2351. Search in Google Scholar

Kopacz M., Drażbo A., Śmiecińska K., Ognik K. (2021). Performance and egg quality of laying hens fed diets containing raw, hydrobarothermally-treated and fermented rapeseed cake. Animals, 11: 3083. Search in Google Scholar

Lichovníková M., Zeman L., Kracmar S., Klecker D. (2004). The effect of the extrusion process on the digestibility of feed given to laying hens. Anim. Feed Sci. Technol., 116: 313–318. Search in Google Scholar

Lv J., Guo L., Chen B., Hao K., Ma H., Liu Y., Min Y. (2022). Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens. Poultry Sci., 101: 101570. Search in Google Scholar

Naji S.A., Al-Zamili I.F., Hassan B., Jawad A.S., Al-Gharawi J.K.M. (2016). The effect of fermented feed on broiler production and intestinal morphology. Pertanika J. Trop. Agric. Sci., 39: 97–607. Search in Google Scholar

Niba A.T., Beal J.D., Kudi A.C., Brooks P.H. (2009). Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. Afr. J. Biotechnol., 8: 1758–1767. Search in Google Scholar

Recoules E., Lessire M., Labas V., Duclos M.J., Combes-Soia L., Lardic L., Peyronnet C., Quinsac A., Narcy A., Réhault-Godbert S. (2019). Digestion dynamics in broilers fed rapeseed meal. Sci. Rep., 9: 3052. Search in Google Scholar

Sasyte V., Grashorn M.A., Klementaviciute J., Viliene V., Raceviciute-Stupeliene A., Gruzauskas R., Dauksiene A., Alijosius S. (2017). Effect of extruded full-fat rapeseed on egg quality in laying hens. Europ. Poult. Sci., 81. Scott R.W. (1979). Colorimetric determination of hexuronic acids in plant materials. Anal. Chem., 51: 936–941. Search in Google Scholar

Slominski B.A., Campbell L.D. (1987). Gas chromatographic determination of indole glucosinolates-a re-examination. J. Sci. Food Agric., 40: 131–143. Search in Google Scholar

Slominski B.A., Campbell L.D. (1990). Non-starch polysaccharides of canola meal: Quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. J. Sci. Food Agric., 53: 175–184. Search in Google Scholar

Smulikowska S., Rutkowski A. (2018). Editors. Recommended allowances and nutritive value of feedstuffs. In: Poultry feeding standards, 5th ed. (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Jabłonna, Poland. Search in Google Scholar

Smulikowska S., Czerwiński J., Mieczkowska A. (2006). Nutritional value of rapeseed expeller cake for broilers: Effect of dry extrusion. J. Anim. Feed Sci., 15: 447–455. Search in Google Scholar

Stahly T.S., Williams N.H., Zimmerman D.R. (1994). Impact of carbide on rate, efficiency and composition of growth in pigs with a low and high level of immune system activation. J. Anim. Sci., 72: 165–174. Search in Google Scholar

Straková E., Všetičková L., Kutlvašr M., Timová I., Suchý P. (2021). Beneficial effects of substituting soybean meal for white lupin (Lupinus albus, cv. Zulika) meal on the biochemical blood parameters of laying hens. Ital. J. Anim. Sci., 20: 352–358. Search in Google Scholar

Strychalski J., Juśkiewicz J., Gugołek A., Wyczling P., Daszkiewicz T., Zwoliński C. (2014). Usability of rapeseed cake and wheat-dried distillers’ grains with solubles in the feeding of growing Californian rabbits. Arch. Anim. Nutr., 68: 227–244. Search in Google Scholar

Sugiharto S., Ranjitkar S. (2019). Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Anim. Nutr., 5: 1–10. Search in Google Scholar

Summers J.D., Spratt D., Leeson S. (1988). Utilization of calcium in canola meal supplemented laying diets. Can. J. Anim. Sci., 68: 1315–1317. Search in Google Scholar

Tang S.G.H., Sieo C.C., Ramasamy K., Saad W.Z., Wong H.E., Ho Y.W. (2017). Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet. Res., 13: 248. Search in Google Scholar

Thompson R.H., Tood J. (1994). Muscle damage in chronic copper poisoning of sheep. Res. Vet. Sci., 16: 97–102. Search in Google Scholar

Tripathi M.K., Mishra A.S. (2007). Glucosinolates in animal nutrition: a review. Anim. Feed Sci. Technol., 132: 1–27. Search in Google Scholar

Xu F., Li L., Xu J., Qian K., Zhang Z., Liang Z. (2011). Effects of fermented rapeseed meal on growth performance and serum parameters in ducks. Asian-Aust. J. Anim. Sci., 24: 678–684. Search in Google Scholar

Yadav S., Teng P.Y., Choi J., Singh A.K., Vaddu S., Thippareddi H., Kim W.K. (2022). Influence of rapeseed, canola meal and glycosylate metabolite (AITC) as potential antimicrobials: effects on growth performance, and gut health in Salmonella Typhimurium challenged broiler chickens. Poultry Sci., 101: 101551. Search in Google Scholar

Zduńczyk Z., Jankowski J., Juśkiewicz J., Mikulski D., Slominski B.A. (2013). Effect of different dietary levels of low-glucosinolate rapeseed (canola) meal and non-starch polysaccharide-degrading enzymes on growth performance and gut physiology of growing turkeys. Can. J. Anim. Sci., 93: 353–362. Search in Google Scholar

Zentek J., Goodarzi Boroojeni F. (2020). (Bio)Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol., 268: 114576. Search in Google Scholar

Zhu L.P., Wang J.P., Ding X.M., Bai S.P., Zeng Q.F., Su Z.W., Xuan Y., Zhang K.Y. (2018). The deposition and elimination of glucosinolate metabolites derived from rapeseed meal in eggs of laying hens. J. Agric. Food Chem., 66: 1560–1568. Search in Google Scholar

Zhu L.P., Wang J.P., Ding X.M., Bai S.P., Zeng Q.F., Su Z.W., Xuan Y., Applegate T.J., Zhang K.Y. (2019). The effects of varieties and levels of rapeseed expeller cake on egg production performance, egg quality, nutrient digestibility, and duodenum morphology in laying hens. Poultry Sci., 98: 4942–4953. Search in Google Scholar

Zhu F., Zhang B., Li J., Zhu L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-kB. Poultry Sci., 99: 2573–2580. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine