[Ali S., Saha S., Kaviraj A. (2020). Fermented mulberry leaf meal as fishmeal replacer in the formulation of feed for carp Labeo rohita and catfish Heteropneustes fossilis – optimization by mathematical programming. Trop. Anim. Health Prod., 52: 839–849.]Search in Google Scholar
[Cai M., Mu L., Wang Z.L., Liu J.Y., Liu T.L., Wanapat M., Huang B.Z. (2019). Assessment of mulberry leaf as a potential feed supplement for animal feeding in P.R. China. Asian-Australas. J. Anim. Sci., 32: 1145–1152.]Search in Google Scholar
[Chan E.W., Lye P.Y., Wong S.K. (2016). Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 14: 17–30.]Search in Google Scholar
[Chen C., Mohamad R.U., Saikim F.H., Mahyudin A., Mohd N.N. (2021). Morus alba L. plant: bioactive compounds and potential as a functional food ingredient. Foods, 10(3).]Search in Google Scholar
[Chen L.Y., Cheng C.W., Liang J.Y. (2015). Effect of esterification condensation on the Folin- Ciocalteu method for the quantitative measurement of total phenols. Food Chem., 170: 10–15.]Search in Google Scholar
[Chen X., Sheng Z., Qiu S., Yang H., Jia J., Wang J., Jiang C. (2019). Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves. PLoS One, 14(1): e208611.]Search in Google Scholar
[Choi J., Kang H.J., Kim S.Z., Kwon T.O., Jeong S.I., Jang S.I. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch. Pharm. Res., 36: 912–917.]Search in Google Scholar
[Ebrahimi A., Schluesener H. (2012). Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing. Res. Rev., 11: 329–345.]Search in Google Scholar
[El-Sayyad H.I. (2015). Cholesterol overload impairing cerebellar function: the promise of natural products. Nutrition, 31: 621–630.]Search in Google Scholar
[Fu Y., Zhang Q., Xu D.H., Xia H., Cai X., Wang B., Liang J. (2014). Parasiticidal effects of Morus alba root bark extracts against Ichthyophthirius multifiliis infecting grass carp. Dis. Aquat. Organ., 108: 129–136.]Search in Google Scholar
[Ganzon J.G., Chen L.G., Wang C.C. (2018). 4-O-caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug. Anal., 26: 985–993.]Search in Google Scholar
[Hao J.Y., Wan Y., Yao X.H., Zhao W.G., Hu R.Z., Chen C., Li L., Zhang D.Y., Wu G.H. (2018). Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS One, 13(6):e198072.]Search in Google Scholar
[He X., Fang J., Ruan Y., Wang X., Sun Y., Wu N., Zhao Z., Chang Y., Ning N., Guo H., Huang L. (2018). Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem., 245: 899–910.]Search in Google Scholar
[Hou J., He S., Ling M., Li W., Dong R., Pan Y., Zheng Y. (2010). A method of extracting ginsenosides from Panax ginseng by pulsed electric field. J. Sep. Sci., 33: 2707–2713.]Search in Google Scholar
[Kandylis K., Hadjigeorgiou I., Harizanis P. (2009). The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep. Trop. Anim. Health Prod., 41: 17–24.]Search in Google Scholar
[Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2013). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita). Proc. Zoological Society (Calcutta), 66: 64–73.]Search in Google Scholar
[Komolka K., Bochert R., Franz G.P., Kaya Y., Pfuhl R., Grunow B. (2020). Determination and comparison of physical meat quality parameters of Percidae and Salmonidae in aquaculture. Foods, 9(4).10.3390/foods9040388723080532230897]Search in Google Scholar
[Kong L., Yang C., Dong L., Diao Q., Si B., Ma J., Tu Y. (2019). Rumen fermentation characteristics in pre- and post-weaning calves upon feeding with mulberry leaf flavonoids and Candida tropicalis individually or in combination as a supplement. Animals, 9: 990.]Search in Google Scholar
[Kwon D.H., Cheon J.M., Choi E.O., Jeong J.W., Lee K.W., Kim K.Y., Kim S.G., Kim S., Hong S.H., Park C., Hwang H.J., Choi Y.H. (2016). The immunomodulatory activity of Mori folium, the leaf of Morus alba L., in RAW 264.7 macrophages in vitro. J. Cancer Prev., 21: 144–151.]Search in Google Scholar
[Kwon D.H., Jeong J.W., Choi E.O., Lee H.W., Lee K.W., Kim K.Y., Kim S.G., Hong S.H., Kim G.Y., Park C., Hwang H.J., Son C.G., Choi Y.H. (2017). Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide- stimulated macrophages and zebrafish. An. Acad. Bras. Cienc., 89: 661–674.]Search in Google Scholar
[Li Y., Zhang X., Liang C., Hu J., Yu Z. (2018). Safety evaluation of mulberry leaf extract: Acute, subacute toxicity and genotoxicity studies. Regul. Toxicol. Pharmacol., 95: 220–226.]Search in Google Scholar
[Liang J.H., Fu Y.W., Zhang Q.Z., Xu D.H., Wang B., Lin D.J. (2015). Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp. J. Agric. Food Chem., 63: 1452–1459.]Search in Google Scholar
[Liang L., Wu X., Zhu M., Zhao W., Li F., Zou Y., Yang L. (2012). Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacon. Mag., 8: 215–224.]Search in Google Scholar
[Lin W.C., Lee M.T., Chang S.C., Chang Y.L., Shih C.H., Yu B., Lee T.T. (2017). Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poultry Sci., 96: 1191–1203.]Search in Google Scholar
[Liu C.G., Ma Y.P., Zhang X.J. (2017). Effects of mulberry leaf polysaccharide on oxidative stress in pancreatic beta-cells of type 2 diabetic rats. Eur. Rev. Med. Pharmacol. Sci., 21: 2482–2488.]Search in Google Scholar
[Liu Y., Li Y., Peng Y., He J., Xiao D., Chen C., Li F., Huang R., Yin Y. (2019 a). Dietary mulberry leaf powder affects growth performance, carcass traits and meat quality in finishing pigs. J. Anim. Physiol. Anim. Nutr. (Berlin), 103: 1934–1945.10.1111/jpn.1320331478262]Search in Google Scholar
[Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25: 402–408.]Search in Google Scholar
[Ma Q., Santhanam R.K., Xue Z., Guo Q., Gao X., Chen H. (2018). Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int. J. Biol. Macromol., 119: 1137–1143.]Search in Google Scholar
[Mahmoud E.A., El-Sayed B.M., Mahsoub Y.H., El-Murr A., Neamat-Allah A. (2020). Effect of Chlorella vulgaris enriched diet on growth performance, hemato-immunological responses, antioxidant and transcriptomics profile disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 102: 422–429.]Search in Google Scholar
[Miao W.G., Tang C., Ye Y., Quinn R.J., Feng Y. (2019). Traditional Chinese medicine extraction method by ethanol delivers drug-like molecules. Chin. J. Nat. Med., 17: 713–720.]Search in Google Scholar
[Mondal K., Kaviraj A., Mukhopadhyay P.K. (2015). Growth performance of Indian minor carp Labeo bata fed varying inclusions of fermented fish-offal and mulberry leaf meal based-diets. Iran. J. Fish. Sci., 14: 567–582.]Search in Google Scholar
[Neamat-Allah A.N.F., El-Murr A.E.I., Abd El-Hakim Y. (2019). Dietary supplementation with low molecular weight sodium alginate improves growth, haematology, immune reactions and resistance against Aeromonas hydrophila in Clarias gariepinus. Aquac. Res., 50: 1547–1556.]Search in Google Scholar
[Neamat-Allah A.N.F., Abd El Hakim Y., Mahmoud E.A. (2020). Alleviating effects of β-glucan in Oreochromis niloticus on growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobria caused by atrazine. Aquac. Res., 51: 1801–1812.]Search in Google Scholar
[Neamat-Allah A.N.F., Mahsoub Y.H., Mahmoud E.A. (2021 a). The potential benefits of dietary β-glucan against growth retardation, immunosuppression, oxidative stress and expression of related genes and susceptibility to Aeromonas hydrophila challenge in Oreochromis niloticus induced by herbicide pendimethalin. Aquac. Res., 52: 518–528.10.1111/are.14910]Search in Google Scholar
[Neamat-Allah A., Mahmoud E.A., Mahsoub Y. (2021 b). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish Shellfish Immunol., 108: 147–156.10.1016/j.fsi.2020.11.02833301933]Search in Google Scholar
[Oliviero F., Scanu A., Zamudio-Cuevas Y., Punzi L., Spinella P. (2018). Anti-inflammatory effects of polyphenols in arthritis. J. Sci. Food. Agric., 98: 1653–1659.]Search in Google Scholar
[Passos C.P., Coimbra M.A. (2013). Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr. Polym., 94: 626–633.]Search in Google Scholar
[Petracci M., Baeza E. (2011). Harmonization of methodologies for the assessment of poultry meat quality features. World Poultry Sci. J., 67: 417–418.]Search in Google Scholar
[Qaisrani S.N., Moquet P.C., van Krimpen M.M., Kwakkel R.P., Verstegen M.W., Hendriks W.H. (2014). Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers. Poultry Sci., 93: 3053–3064.]Search in Google Scholar
[Sheikhlar A., Alimon A.R., Daud H., Saad C.R., Webster C.D., Meng G.Y., Ebrahimi M. (2014). White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African catfish (Clarias gariepinus). Sci. World J., 2014: 592709.]Search in Google Scholar
[Sheikhlar A., Goh Y.M., Alimon R., Ebrahimi M. (2017). Antioxidative effects of mulberry foliage extract in African catfish diet. Aquac. Res., 48: 4409–4419.]Search in Google Scholar
[Wang W., Zu Y., Fu Y., Efferth T. (2012). In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am. J. Chin. Med., 40: 349–356.]Search in Google Scholar
[Wei X., Chen M., Xiao J., Liu Y., Yu L., Zhang H., Wang Y. (2010). Composition and bioactivity of tea flower polysaccharides obtained by different methods. Carbohydr. Polym., 79: 418–422.]Search in Google Scholar
[Xiong X., Li H., Qiu N., Su L., Huang Z., Song L., Wang J. (2020). Bioconcentration and depuration of cadmium in the selected tissues of rare minnow (Gobiocypris rarus) and the effect of dietary mulberry leaf supplementation on depuration. Environ. Toxicol. Pharmacol., 73: 103278.]Search in Google Scholar
[Yu Y., Ye H., Wu D., Shi H., Zhou X. (2019). Chemoenzymatic quantification for monitoring unpurified polysaccharide in rich medium. Appl. Microbiol. Biotechnol., 103: 7635–7645.]Search in Google Scholar
[Zhao X., Yang R., Bi Y., Bilal M., Kuang Z., Iqbal H., Luo Q. (2019). Effects of dietary supplementation with mulberry (Morus alba L.) leaf polysaccharides on immune parameters of weanling pigs. Animals (Basel), 10(1).]Search in Google Scholar
[Zhou J., Yuan X., Li L., Zhang T., Wang B. (2017). Comparison of different methods for extraction of Cinnamomi ramulus: yield, chemical composition and in vitro antiviral activities. Nat. Prod. Res., 31: 2909–2913.]Search in Google Scholar
[Zou Y., Liao S., Shen W., Liu F., Tang C., Chen C.Y., Sun Y. (2012). Phenolics and antioxidant activity of mulberry leaves depend on cultivar and harvest month in Southern China. Int. J. Mol. Sci., 13: 16544–16553.]Search in Google Scholar