[Abdel-Tawwab M., Mousa M.A., Mohammed M.A. (2010). Use of live baker’s yeast, Saccharomyces cerevisiae, in practical diet to enhance the growth performance of Galilee tilapia, Sarotherodon galilaeus (L.), and its resistance to environmental copper toxicity. J. World Aquacult. Soc., 41: 214–223.]Search in Google Scholar
[Adamse P., Vander Fels-Klerx H.J., de Jong J. (2017). Cadmium, lead, mercury and arsenic in animal feed and feed materials–trend analysis of monitoring results. Food Additives Contamin. Part A, 34: 1298–1311.]Search in Google Scholar
[Ahamed M., Siddiqui M.K.J. (2007). Environmental lead toxicity and nutritional factors. Clin. Nutr., 26: 400–408.]Search in Google Scholar
[Ahmed F., Soliman F.M., Adly M.A., Soliman H.A., El-Matbouli M., Saleh M. (2021). Dietary chitosan nanoparticles: potential role in modulation of rainbow trout (Oncorhynchus mykiss) antibacterial fefense and intestinal immunity against enteric redmouth disease. Marine Drugs, 19: 72.]Search in Google Scholar
[Ahmed M.K., Parvin E., Islam M.M., Akter M.S., Khan S., Al-Mamun M.H. (2014). Lead- and cadmium-induced histopathological changes in gill, kidney and liver tissue of freshwater climbing perch Anabas testudineus (Bloch, 1792). Chem. Ecol., 30: 532–540.]Search in Google Scholar
[Al-Dohail M.A., Hashim R., Aliyu-Paiko M. (2011). Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquacult. Res. 42: 196–209.]Search in Google Scholar
[Ali H., Khan E., Ilahi I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem., https://doi.org/10.1155/2019/673030510.1155/2019/6730305]Search in Google Scholar
[Álvarez-González C.A., Martínez-Sánchez L., Peña-Marín E.S., Guerrero-Zárate R., Jesús-Ramírez F., Morales-García V., Uribe-López M., Núñez-Nogueira G. (2020). Effects on the growth and digestive enzyme activity in Nile tilapia fry (Oreochromis niloticus) by lead exposure. Water Air Soil Pollut., 231: 1–15.]Search in Google Scholar
[Alves L.C., Glover C.N., Wood C.M. (2006). Dietary Pb accumulation in juvenile freshwater rainbow trout (Oncorhynchus mykiss). Archiv. Environ. Contamin. Toxicol., 51: 615.]Search in Google Scholar
[Anal A.K., Singh H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol., 18: 240–251.]Search in Google Scholar
[Awoyemi O.M., Bawa-Allah K.A., Otitoloju A.A. (2014). Accumulation and anti-oxidant enzymes as biomarkers of heavy metal exposure in Clarias gariepinus and Oreochromis niloticus. Appl. Ecol. Environ. Sci., 2: 114–122.]Search in Google Scholar
[Balakrishnan R., Kumar C.S., Reddy K.K., Rani M.U., Srikanth M.K., Kavitha K. (2014). Antioxidant activity of coated probiotic Lactobacillus casei on chromium (VI) induced oxidative stress in rats. Proc. National Academy of Sciences, India Section B: Biol. Sci., 84: 305–310.]Search in Google Scholar
[Banwo K., Alonge Z., Sanni A.I. (2021). Binding capacities and antioxidant activities of Lactobacillus plantarum and Pichia kudriavzevii against cadmium and lead toxicities. Biol. Trace Elem. Res., 199: 779–791.]Search in Google Scholar
[Belinskaia D.A., Voronina P.A., Shmurak V.I., Vovk M.A., Batalova A.A., Jenkins R.O., Goncharov N.V. (2020). The universal soldier: enzymatic and non-enzymatic antioxidant functions of serum albumin. Antioxidants, 9: 966.]Search in Google Scholar
[Berti G., Fossati P., Tarenghi G., Musitelli C, d’Eril G.V. (1988). Enzymatic colorimetric method for the determination of inorganic phosphorus in serum and urine. J. Clin. Chem. Clin. Biochem., 26: 399–404.]Search in Google Scholar
[Bhakta J.N., Ohnishi K., Munekage Y., Iwasaki K., Wei M.Q. (2012). Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. J. Appl. Microbiol., 112: 1193–1206.]Search in Google Scholar
[Bhattacharya S. (2019). Probiotics against alleviation of lead toxicity: recent advances. Interdisciplin. Toxicol., 12: 89–92.]Search in Google Scholar
[Bhattacharya S. (2020). The role of probiotics in the amelioration of cadmium toxicity. Biol. Trace Elem. Res., 197: 440–444.]Search in Google Scholar
[Bi B., Liu X., Guo X., Lu S. (2018). Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res., 25: 34076–34090.]Search in Google Scholar
[Chromý V., Svoboda V., Štěpánová I. (1973). Spectrophotometric determination of magnesium in biological fluids with xylidyl blue II. Biochem. Med., 7: 208–217.]Search in Google Scholar
[Dabrowska-Bouta B., Struzynska L., Rafalowska U. (1996). Effect of acute and chronic lead exposure on the level of sulfhydryl groups in rat brain. Acta Neurobiol. Experim., 56: 233–236.]Search in Google Scholar
[Dai B., Hou Y., Hou Y., Qian L. (2019). Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquacult. Nutr., 25: 15–25.]Search in Google Scholar
[Dai S.Y., Jones B., Lee K.M., Li W., Post L., Herrman T.J. (2016). Heavy metal contamination of animal feed in Texas. J. Reg. Sci., 4: 21–32.]Search in Google Scholar
[Dai W., Du H., Fu L., Jin C., Xu Z., Liu H. (2009). Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 127: 124–131.]Search in Google Scholar
[Dawood M.A., Koshio S., Ishikawa M., Yokoyama S., El Basuini M.F., Hossain M.S. (2016). Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol., 49: 275–285.]Search in Google Scholar
[El-Haroun E.R., Goda A.S., Kabir Chowdhury M.A. (2006). Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquacult. Res., 37: 1473–1480.]Search in Google Scholar
[El-Shafei H.M. (2017). Alterations in the leucocytes and serum biochemistry in grey mullet (Mugil cephalus L.) fingerlings exposed to sub lethal doses of lead for different exposure periods. J. Aquacult. Res. Develop., 8: 1–5.]Search in Google Scholar
[Fantin A.M.B., Trevisan P., Pederzoli A., Bergomi M. (1988). Effects of acute experimental pollution by lead on some haematological parameters in Carassius carassius (L.) var. auratus. It. J. Zool., 55: 251–255.]Search in Google Scholar
[Fırat Ö., Kargın F. (2010). Individual and combined effects of heavy metals on serum biochemistry of Nile tilapia Oreochromis niloticus. Archiv. Environ. Contamin. Toxicol., 58: 151–157.]Search in Google Scholar
[Fırat Ö., Cogun H.Y., Yüzereroğlu T.A., Gök G., Fırat Ö., Kargin F., Kötemen Y. (2011). A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem., 37: 657–666.]Search in Google Scholar
[Ghanei-Motlagh R., Baghshani H., Shahsavani D., Ghodrati Azadi H. (2017). Effect of dietary supplementation of garlic and vitamin E on lipid and protein oxidation in common carp meat during different storage times. Iran. J. Vet. Sci. Technol., 8: 40–47.]Search in Google Scholar
[Ghanei-Motlagh R., Mohammadian T., Gharibi D., Khosravi M., Mahmoudi E., Zarea M. (2020). Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microflora, haemato-biochemical parameters and resistance against Vibrio harveyi in Asian seabass (Lates calcarifer). Aquaculture, 531: 735874.]Search in Google Scholar
[Ghanei-Motlagh R., Gharibi D., Mohammadian T., Khosravi M., Mahmoudi E., Zarea M., Menanteau-Ledouble S., El-Matbouli M. (2021). Feed supplementation with quorum quenching probiotics with anti-virulence potential improved innate immune responses, antioxidant capacity and disease resistance in Asian seabass (Lates calcarifer). Aquaculture, 535: 736345.]Search in Google Scholar
[Giri S.S., Yun S., Jun J.W., Kim H.J., Kim S.G., Kang J.W. (2018). Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front. Immunol., 9: 1824.]Search in Google Scholar
[Grotto D., Maria L.S., Valentini J., Paniz C., Schmitt G., Garcia S.C. (2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quimica Nova, 32: 169–174.]Search in Google Scholar
[Haddad J.J., Harb H.L. (2005). l-γ-Glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro-and anti-inflammatory cytokines: a signaling transcriptional scenario for redox (y) immunologic sensor (s)? Mol. Immunol., 42: 987–1014.]Search in Google Scholar
[Hahor W., Thongprajukaew K, Suanyuk N. (2019). Effects of dietary supplementation of oligosaccharides on growth performance, gut health and immune response of hybrid catfish (Pangasianodon gigas × Pangasianodon hypophthalmus). Aquaculture, 507: 97–107.]Search in Google Scholar
[Haux C., Larsson Å. (1982). Influence of inorganic lead on the biochemical blood composition in the rainbow trout, Salmo gairdneri. Ecotoxicol. Environ. Safety, 6: 28–34.]Search in Google Scholar
[Hong F.S. (2003). Study of the effect of Pb2+ on alpha-amylase activity by spectroscopy (in Chinese). Guang Pu Xue Yu Guang Pu Fen Xi, 23: 583.]Search in Google Scholar
[Hooshyar Y., Abedian Kenari A., Paknejad H., Gandomi H. (2020). Effects of Lactobacillus rhamnosus ATCC 7469 on different parameters related to health status of rainbow trout (Oncorhynchus mykiss) and the protection against Yersinia ruckeri. Prob. Antimicrob. Prot., 12: 1370–1384.]Search in Google Scholar
[Hoseini S.M., Yousefi M., Hoseinifar S.H., Van Doan H. (2019). Antioxidant, enzymatic and hematological responses of common carp (Cyprinus carpio) fed with myrcene- or mentholsupplemented diets and exposed to ambient ammonia. Aquaculture, 506: 246–255.]Search in Google Scholar
[Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F., Carnevali O. (2020). Oxidative stress and antioxidant defense in fish: the implications of probiotic, prebiotic, and synbiotics. Rev. Fish. Sci. Aquacult., 1–20.]Search in Google Scholar
[Janbakhsh S., Hosseini Shekarabi S.P, Shamsaie Mergan M. (2018). Nutritional value and heavy metal content of fishmeal from the Southwest Caspian Sea. Caspian J. Environ. Sci., 16: 307–317.]Search in Google Scholar
[Jang W.J., Lee J.M., Hasan M.T., Lee B.J., Lim S.G., Kong I.S. (2019). Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity, digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol., 92: 719–727.]Search in Google Scholar
[Javed M., Ahmad M.I., Usmani N., Ahmad M. (2017). Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci. Rep., 7: 1–11.]Search in Google Scholar
[Kailasapathy K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Iss. Intest. Microbiol., 3: 39–48.]Search in Google Scholar
[Kaya H., Akbulut M., Yılmaz S. (2015). Influence of sublethal lead concentrations on glucose, serum enzymes and ion levels in tilapia (Oreochromis mossambicus). Proc. 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA, 2015), pp. 858–866.]Search in Google Scholar
[Khan M.S., Javed M., Rehman M.T., Urooj M., Ahmad M.I. (2020). Heavy metal pollution and risk assessment by the battery of toxicity tests. Sci. Rep., 10: 1–10.]Search in Google Scholar
[Kim J.H., Kang J.C. (2017). Toxic effects on bioaccumulation and hematological parameters of juvenile rockfish Sebastes schlegelii exposed to dietary lead (Pb) and ascorbic acid. Chemosphere, 176: 131–140.]Search in Google Scholar
[Kirillova A.V., Danilushkina A.A., Irisov D.S., Bruslik N.L., Fakhrullin R.F., Zakharov Y.A. (2017). Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. Int. J. Microbiol., 2017. https://doi.org/10.1155/2017/9869145.10.1155/2017/9869145524145328133483]Search in Google Scholar
[Kong Y., Olejar K.J., On S.L., Chelikani V. (2020). The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract. Antioxidants, 9: 610.]Search in Google Scholar
[Kurhaluk N., Sliuta A., Kyriienko S., Winklewski P.J. (2017). Melatonin restores white blood cell count, diminishes glycated haemoglobin level and prevents liver, kidney and muscle oxidative stress in mice exposed to acute ethanol intoxication. Alcohol Alcoholism, 52: 521–528.]Search in Google Scholar
[Lee J.W., Choi H., Hwang U.K., Kang J.C., Kang Y.J., Kim K.I., Kim J.H. (2019). Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ. Toxicol. Pharmacol., 68: 101–108.]Search in Google Scholar
[Li B., Jin D., Yu S., Etareri Evivie S., Muhammad Z., Huo G., Liu F. (2017). In vitro and in vivo evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1. 0207 for the alleviative effect on lead toxicity. Nutrients, 9: 845.]Search in Google Scholar
[Madreseh S., Ghaisari H.R., Hosseinzadeh S. (2019). Effect of lyophilized, encapsulated Lactobacillus fermentum and lactulose feeding on growth performance, heavy metals, and Trace element residues in rainbow trout (Oncorhynchus mykiss) tissues. Prob. Antimicrob. Prot., 11: 1257–1263.]Search in Google Scholar
[Mager E.M. (2012). Lead. In: Homeostasis and toxicology of non-essential metals, C.M. Wood, A.P. Farrell, C.J. Brauner (eds). Academic Press, US, pp. 185–236.]Search in Google Scholar
[Martinez C.B.R., Nagae M.Y., Zaia C.T.B.V., Zaia D.A.M. (2004). Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Braz. J. Biol., 64: 797–807.]Search in Google Scholar
[Masindi V., Muedi K.L. (2018). Environmental contamination by heavy metals. In: Heavy metals, H. Saleh (ed.), Intechopen, London, pp. 115–132.10.5772/intechopen.76082]Search in Google Scholar
[Mirmazloomi S., Shahsavani D., Baghshani H. (2015). Studies on the protective effects of ascorbic acid and thiamine on lead-induced lipid and protein oxidation as well as enzymatic alterations in some tissues of Cyprinus carpio. Compar. Clin. Pathol., 24: 1231–1236.]Search in Google Scholar
[Mittal N., Kanwar S.S., Sanyal S.N. (2008). Effect of nonsteroidal anti-inflammatory drugs and the procarcinogen 1, 2-dimethylhydrazine on the antioxidant defense system. Int. J. Toxicol., 27: 169–174.]Search in Google Scholar
[Mohammadian T., Alishahi M., Tabandeh M.R., Ghorbanpoor M., Gharibi D., Tollabi M., Rohanizade S. (2016). Probiotic effects of Lactobacillus plantarum and L. delbrueckii ssp. bulguricus on some immune-related parameters in Barbus grypus. Aquacult. Int., 24: 225–242.]Search in Google Scholar
[Mohammadian T., Dezfuly Z.T., Motlagh R.G., Jangaran-Nejad A., Hosseini S.S., Khaj H., Alijani N. (2019 a). Effect of encapsulated Lactobacillus bulgaricus on innate immune system and hematological parameters in rainbow trout (Oncorhynchus mykiss), postadministration of Pb. Prob. Antimicrob. Prot., 12: 375–388.10.1007/s12602-019-09544-731025260]Search in Google Scholar
[Mohammadian T., Nasirpour M., Tabandeh M.R., Heidary A.A., Ghanei-Motlagh R., Hosseini S.S. (2019 b). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol., 86: 269–279.10.1016/j.fsi.2018.11.05230468893]Search in Google Scholar
[Mohammadian T., Ghanei-Motlagh R., Molayemraftar T., Mesbah M., Zarea M., Mohtashamipour H., Nejad A.J. (2021). Modulation of growth performance, gut microflora, non-specific immunity and gene expression of proinflammatory cytokines in shabout (Tor grypus) upon dietary prebiotic supplementation. Fish Shellfish Immunol., 112: 38–45.]Search in Google Scholar
[Monachese M., Burton J.P., Reid G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl. Environ. Microbiol., 78: 6397–6404.]Search in Google Scholar
[Mrvčić J., Stanzer D., Šolić E., Stehlik-Tomas V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J. Microbiol. Biotechnol., 28: 2771–2782.]Search in Google Scholar
[Mu G., Li H., Tuo Y., Gao Y., Zhang Y. (2019). Antioxidative effect of Lactobacillus plantarum Y44 on 2, 2′-azobis (2-methylpropionamidine) dihydrochloride (ABAP) – damaged Caco-2 cells. J. Dairy Sci., 102: 6863–6875.]Search in Google Scholar
[Muhammad Z., Ramzan R., Zhang S., Hu H., Hameed A., Bakry A.M. (2018). Comparative assessment of the bioremedial potentials of potato resistant starch-based microencapsulated and non-encapsulated Lactobacillus plantarum to alleviate the effects of chronic lead toxicity. Front. Microbiol., 9: 1306.]Search in Google Scholar
[Mustafa S.A. (2020). Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. Egyp. J. Aquat. Res., 46: 123–129.]Search in Google Scholar
[Naderi M., Keyvanshokooh S., Ghaedi A., Salati A.P. (2019). Interactive effects of dietary Nano selenium and vitamin E on growth, haematology, innate immune responses, antioxidant status and muscle composition of rainbow trout under high rearing density. Aquacult. Nutr., 25: 1156–1168.]Search in Google Scholar
[Noor-Ul H., Haokun L., Junyan J., Xiaoming Z., Dong H., Yunxia Y., Shouqi X. (2020). Dietary supplementation of Geotrichum candidum improves growth, gut microbiota, immune-related gene expression and disease resistance in gibel carp CAS III (Carassius auratus gibelio). Fish Shellfish Immunol., 99: 144–153.]Search in Google Scholar
[Pinpimai K., Rodkhum C., Chansue N., Katagiri T., Maita M., Pirarat N. (2015). The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile tilapia (Oreochromis niloticus). Res. Vet. Sci., 102: 103–111.]Search in Google Scholar
[Puzas J.E., Campbell J., O’Keefe R.J., Rosier R.N. (2004). Lead toxicity in the skeleton and its role in osteoporosis. In: Nutrition and bone health, M.F. Holick, B. Dawson-Hughes (eds). Humana Press, NJ, pp. 363–376.10.1007/978-1-59259-740-6_22]Search in Google Scholar
[Ringø E., Hoseinifar S.H., Ghosh K., Doan H.V., Beck B.R., Song S.K. (2018). Lactic acid bacteria in finfish – an update. Front. Microbiol., 9: 1818.]Search in Google Scholar
[Roche M., Rondeau P., Singh N.R., Tarnus E., Bourdon E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582: 1783–1787.]Search in Google Scholar
[Rogers J.T., Richards J.G., Wood C.M. (2003). Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol. 64: 215–234.]Search in Google Scholar
[Safari R., Adel M., Lazado C.C., Caipang C.M.A., Dadar M. (2016). Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol., 52: 198–205.]Search in Google Scholar
[Salinas I., Abelli L., Bertoni F., Picchietti S., Roque A., Furones D. (2008). Monospecies and multispecies probiotic formulations produce different systemic and local immunostimulatory effects in the gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol., 25: 114–123.]Search in Google Scholar
[Serrano X., Hernández A.J., Morales G., Larson M., Ruiz J., Orellana P., Díaz M., Moyano F.J., Márquez L. (2018). Effects of dietary melanoidins on digestive physiology, nutrient digestibility and plasmatic antioxidant capacity of the rainbow trout Oncorhynchus mykiss. Aquaculture, 495: 153–160.]Search in Google Scholar
[Song H., Yu W., Gao M., Liu X., Ma X. (2013). Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polym., 96: 181–189.]Search in Google Scholar
[Srivastav A.K., Rai R., Suzuki N., Mishra D., Srivastav S.K. (2013). Effects of lead on the plasma electrolytes of a freshwater fish, Heteropneustes fossilis. Int. Aquatic Res., 5: 4.]Search in Google Scholar
[Suzer C., Çoban D., Kamaci H.O., Saka Ş., Firat K., Otgucuoğlu Ö., Küçüksari H. (2008). Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture, 280: 140–145.]Search in Google Scholar
[Tarkhani R., Imani A., Hoseinifar S.H., Ashayerizadeh O., Moghanlou K.S., Manaffar R., Van Doan H., Reverter M. (2020). Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus rutilus caspicus) fingerlings. Fish Shellfish Immunol., 98: 661–669.]Search in Google Scholar
[Tewari H., Gill T.S., Pant J. (1987). Impact of chronic lead poisoning on the hematological and biochemical profiles of a fish, Barbus conchonius (Ham). Bull. Environ. Contamin. Toxicol., 38: 748–752.]Search in Google Scholar
[Tian F., Zhai Q., Zhao J., Liu X., Wang G., Zhang H., Zhang H., Chen W. (2012). Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol. Trace Elem. Res., 150: 264–271.]Search in Google Scholar
[Tipple T.E., Rogers L.K. (2012). Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol., 889: 315–324.]Search in Google Scholar
[Vazirzadeh A., Roosta H., Masoumi H., Farhadi A., Jeffs A. (2020). Long-term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow-out. Fish Shellfish Immunol., 98: 748–757.]Search in Google Scholar
[Velíšek J., Svobodová Z. (2004). Anaesthesia of Rainbow Trout (Oncorhynchus mykiss) with 2-phenoxyethanol: Acute toxicity and biochemical blood profile. Acta Vet. Brno, 73: 379–384.]Search in Google Scholar
[Wang Y., Wu Y., Wang Y., Xu H., Mei X., Yu D., Wang Y., Li W. (2017). Antioxidant properties of probiotic bacteria. Nutrients, 9: 521.]Search in Google Scholar
[Yang G., Shen K., Yu R., Wu Q., Yan Q., Chen W., Ding L., Kumar V., Wen C., Peng M. (2020). Probiotic (Bacillus cereus) enhanced growth of Pengze crucian carp concurrent with modulating the antioxidant defense response and exerting beneficial impacts on inflammatory response via Nrf2 activation. Aquaculture, 529: 735691.]Search in Google Scholar
[Yang L., Gao Z., Cao Y., Xing R., Zhang X. (2005). Effect of PbII on the secondary structure and biological activity of trypsin. Chembiochem, 6: 1191–1195.]Search in Google Scholar
[Yousefi M., Hoseini S.M., Vatnikov Y.A., Kulikov E.V., Drukovsky S.G. (2019). Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture, 505: 473–480.]Search in Google Scholar
[Yu L., Zhai Q., Zhu J., Zhang C., Li T., Liu X., Zhao J., Zhang H., Tian F., Chen W. (2017). Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicol. Environ. Safety, 143: 307–314.]Search in Google Scholar
[Yu Z., Zheng Y.G., Du H.L., Li H.J., Wu L.F. (2020). Bioflocs protects copper–induced inflammatory response and oxidative stress in Rhynchocypris lagowski Dybowski through inhibiting NF-κB and Nrf2 signaling pathways. Fish Shellfish Immunol., 98: 466–476.]Search in Google Scholar
[Zhai Q., Narbad A., Chen W. (2015). Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients, 7: 552–571.]Search in Google Scholar
[Zhai Q., Yu L., Li T., Zhu J., Zhang C., Zhao J., Zhang H., Chen W. (2016). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek, 110: 501–513.]Search in Google Scholar
[Zhai Q., Wang H., Tian F., Zhao J., Zhang H., Chen W. (2017). Dietary Lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquacult. Res., 48: 5094–5103.]Search in Google Scholar
[Zhao L., Zheng Y.G., Feng Y.H., Li M.Y., Wang G.Q., Ma Y.F. (2020). Toxic effects of waterborne lead (Pb) on bioaccumulation, serum biochemistry, oxidative stress and heat shock protein– related genes expression in Channa argus. Chemosphere, 261: 127714.]Search in Google Scholar
[Zoghi A., Khosravi-Darani K., Sohrabvandi S. (2014). Surface binding of toxins and heavy metals by probiotics. Mini Rev. Med. Chem., 14: 84–98.]Search in Google Scholar