[Abd El-Hack M. E., Alagawany M., Arif M., Chaudhry M. T. (2017). Organic or inorganic zinc in poultry nutrition: a review. World. Poultry Sci. J., 73: 904–915.]Search in Google Scholar
[Ahmadi F., Ebrahimnezhad Y., Sis N. M., Ghalehkandi J. G. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Biol. Sci., 3: 23–29.]Search in Google Scholar
[Aksu T., Aksu M. I., Yorku M. A., Karaoglu M. (2011). Effects of organically-complexed minerals on meat quality in chickens. Brit. Poultry Sci., 52: 558–563.]Search in Google Scholar
[Al-Daraji H. J., Amen M. H. M. (2011). Effect of dietary zinc on certain blood traits of broiler breeder chickens. Int. J. Poultry Sci., 10: 807–813.]Search in Google Scholar
[Azad S. K., Shariatmadari F., Torshizi M. A. K., Ahmadi H. (2017). Effect of zinc concentration and source on performance, tissue mineral status, activity of superoxide dismutase enzyme and lipid peroxidation of meat in broiler chickens. Anim. Prod. Sci., 10.]Search in Google Scholar
[Bao Y. M., Choct M. (2009). Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. Anim. Prod. Sci., 49: 269–282.]Search in Google Scholar
[Bertolo R. F., Bettger W. J., Atkinson S. A. (2001). Divalent metals inhibit and lactose stimulates zinc transport across brush border membrane vesicles from piglets. J. Nutr. Biochem., 12: 73–80.]Search in Google Scholar
[Blavi L., Sola-Oriol D., Perez J. F., Stein H. H. (2017). Effects of zinc oxide and microbial phytase on digestibility of calcium and phosphorus in maize-based diets fed to growing pigs. J. Anim. Sci., 95: 847–854.]Search in Google Scholar
[Bratz K., Golz G., Riedel C., Janczyk P., Nockler K., Alter T. (2013). Inhibitory effect of high-dosage zinc oxide dietary supplementation on Campylobacter coli excretion in weaned pig-lets. J. Appl. Microbiol., 115: 1194–1202.]Search in Google Scholar
[Brooks M. A., Grimes J. L., Lloyd K. E., Verissimo S., Speers J. W. (2013). Bioavailability in chicks of zinc from zinc propionate. J. Appl. Poultry Res., 22: 153–159.]Search in Google Scholar
[Bun S. D., Guo Y. M., Guo F. C., Ji F. J., Cao H. (2011). Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Sci., 90: 1220–1226.]Search in Google Scholar
[Case C. L., Carlson M. S. (2002). Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci., 80: 1917–1924.]Search in Google Scholar
[Ding X., Wen L., Yuan H. (2009). Effect of nano-zinc oxide on metallothionin of AA chicken. Chin. J. Vet. Sci., 2: 31–37.]Search in Google Scholar
[EFSAFEEDAPPanel(EFSAPanelon Additivesand Productsor Substancesusedin Animal Feed). (2014). Scientific opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J., 12: 3668.10.2903/j.efsa.2014.3668]Search in Google Scholar
[Feng J., Ma W. Q., Niu H. H., Wu M. X., Wang Y., Feng J. (2010). Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biol. Trace Elem. Res., 133: 203–211.]Search in Google Scholar
[Feng J., Min L., Zhang W., Liu J., Hou Z., Chu M., Li L., Shen W., Zhao Y., Zhang H. (2017). Zinc oxide nanoparticles influence microflora in ileal digesta and correlate well with blood metabolites. Front. Microbiol., 8: 992.]Search in Google Scholar
[GfE (Gesellschaft für Ernährungsphysiologie) (2004). Empfehlungen zur Energie- und Nährstoffversorgung der Mastputen. Proc. Society of Nutrition Physiology, 13: 199–233.]Search in Google Scholar
[Hett A. (2004). Nanotechnology: small matters, many unknown. Swiss Reinsurance Company, pp. 1–55.]Search in Google Scholar
[Hillyer J. F., Albrecht R. M. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci., 90: 1927–1936.]Search in Google Scholar
[Huang S. S., Chen C. L., Huan F. W., Johnson F. E., Huang J. S. (2015). Ethanol enhances TGF-β activity by recruiting TGF-β receptors from intracellular vesicles/lipid rafts/caveolae to nonlipid raft microdomains. J. Cell. Biochem., 117: 860–871.]Search in Google Scholar
[Hybrid Turkeys (2016). Nutrient Guidelines. http://www.hybridturkeys.com/en/hybrid454resources/nutritional–guidelines/ (accessed 5.03.2019).]Search in Google Scholar
[Jankowski J., Kozłowski K., Ognik K., Otowski K., Juśkiewicz J., Zduńczyk Z. (2019 a). The effect of the dietary inclusion levels and sources of zinc on the performance, metabolism, redox and immune status of turkeys. Anim. Feed Sci. Tech., 252: 103–114.10.1016/j.anifeedsci.2019.04.014]Search in Google Scholar
[Jankowski J., Ognik K., Kozłowski K., Stępniowska A., Zduńczyk Z. (2019 b). Effect of different levels and sources of dietary copper, zinc and manganese on the performance and immune and redox status of turkeys. Animals, 9: 883.10.3390/ani9110883691284031671582]Search in Google Scholar
[Li M. Z., Huang J. T., Tsai Y. H., Mao S. Y., Fu C. M., Lien T. F. (2016). Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J., 87: 1379–1385.]Search in Google Scholar
[Liu Z. H., Lu L., Li S. F., Zhang L. Y., Xi L., Zhang K. Y., Luo X. G. (2011). Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry Sci., 90: 1782–1790.]Search in Google Scholar
[Mahammadi V., Ghazanfari S., Mohammadi-Sangchesmeh A., Nazaran M. H. (2015). Comparative effect of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Brit. Poultry Sci., 56: 486–493.]Search in Google Scholar
[Mishra A., Swain R. K., Mishra S. K., Panda N., Sethy K. (2014). Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr., 31: 384–388.]Search in Google Scholar
[Naz S., Idris M., Khalique M. A., Rahman Z. U. (2016). The activity and use of zinc in poultry diet. World. Poultry Sci. J., 72: 159–167.]Search in Google Scholar
[Niles B. J., Clegg M. S., Hanna L. A., Chou S. S., Momma T. Y., Hong H., Keen C. I. (2008). Zinc deficiency-induced iron accumulation, a consequence of alternations in iron regulatory protein binding activity, iron transporters and iron storage proteins. J. Biol. Chem., 283: 5168–5177.]Search in Google Scholar
[NRC (National Research Council) (1994). Nutrient Requirements of Poultry. 9th rev. ed. National Academy Press, Washington, DC, USA.]Search in Google Scholar
[Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 2: 259–271.]Search in Google Scholar
[Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.]Search in Google Scholar
[Ognik K., Stępniowska A., Kozłowski K. (2017). The effect of administration of silver nanoparticles to broiler chickens on estimated intestinal absorption of iron, calcium, and potassium. Livest. Sci., 200: 40–45.]Search in Google Scholar
[Olgun O., Yildiz A. Ö. (2017). Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann. Anim. Sci., 17: 463–476.]Search in Google Scholar
[Park S., Birkhold Y. S., Kubena L., Nisbet D., Ricke S. (2004). Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol. Trace Elem. Res., 101: 147–163.]Search in Google Scholar
[Petrovič V., Kushev J., Nollet L., Kováč G. (2011). Effect of dietary supplementation of trace elements on blood chemistry and selected immunological indices depending on the age of broiler chickens. Acta Vet. Brno, 80: 057–064.]Search in Google Scholar
[Piccinno F., Gottschalk F., Seeger S., Nowack B. (2012). Industrial production quantities and uses of ten engineered nanomaterials for Europe and the world. J. Nanopart. Res., 14: 1109–1120.]Search in Google Scholar
[Powell S. R. (2000). The antioxidant properties of zinc. J. Nutr., 130: 1447–1454.]Search in Google Scholar
[Rahman M. M., Wahed M. A., Fuchs G. J., Bayui A. H., Alvarez J. I. (2002). Synergetic effect of zinc and vitamin A on the biochemical indexes of vitamin A nutrition in children. Am. J. Clin. Nutr., 1: 92–98.]Search in Google Scholar
[Ramiah S. K., Awad E. A., Mookiah S., Idrus Z. (2019). Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poultry Sci., 98: 3828–3838.]Search in Google Scholar
[Sadauskas E., Wallin H., Stoltenberg M., Vogel U., Doering P., Larsen A., Dan-scher G. (2007). Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol., 4: 10.]Search in Google Scholar
[Saenmahayak B., Singh M., Bilgili S. F., Hess J. B. (2012). Influence of dietary supplementation with complexed zinc on meat quality and shelf life of broiler. Int. J. Poultry Sci., 11: 28–32.]Search in Google Scholar
[Sahoo A., Swain R., Mishra S. K. (2014). Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. Int. J. Adv. Res., 2: 828–837.]Search in Google Scholar
[Sahraei M., Janmmohamadi H., Taghizadeh A., Moghadam G. A., Rafat S. A. (2013). Estimation of the relative bioavailability of several zinc sources for broilers fed a conventional corn-soybean meal diet. J. Poultry Sci., 50: 53–59.]Search in Google Scholar
[Sandoval M., Henry P. R., Ammerman C. B., Miles R. D., Littell R. C. (1997). Relative bioavailability of supplemental zinc sources for chicks. J. Anim. Sci., 75: 3195–3205.]Search in Google Scholar
[Short F., Gorton P., Wiseman J., Boorman K. (1996). Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol., 59: 215–221.]Search in Google Scholar
[Sirri F., Maiorano G., Tavaniell S., Chen J., Petracci M., Meluzzi A. (2016). Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Sci., 95: 1813–1824.]Search in Google Scholar
[Smulikowska S., Rutkowski A. (2005). Editors. Poultry nutrition standards. Dietary advice and nutritional value of feed. IFZZ PAN Jabłonna, Omnitech Press, Warszawa.]Search in Google Scholar
[Spencer H., Rubio N., Kramer L., Norris C., Osis D. (1987). Effect of zinc supplements on the intestinal absorption of calcium. J. Am. Coll. Nutr., 6: 47–51.]Search in Google Scholar
[Sunder G. S., Panda A. K., Gopinath N. C. S., Rao S. V. R., Raju M. V. L. N., Reddy M. R., Kumar C. V. (2008). Effect of high levels of zinc supplementation on performance, mineral availability and immune competence in broiler chicken. J. Appl. Poultry Res., 17: 79–86.]Search in Google Scholar
[Swain P. S., Rao S. B. N., Duraisamy R., George D., Sellappan S. (2016). Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr., 2: 134–141.]Search in Google Scholar
[Syama S., Reshma S. C., Sreekanth P. J., Varma H. K., Mohanan P. V. (2013). Effect of ZONPs on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicol. Environ. Chem., 22: 21–26.]Search in Google Scholar
[Tronina W., Kinal S., Lubojemska B. (2007). Effect of various forms of zinc applied in concentrate mixtures for broiler chickens on its bioavailability as well as meat composition and quality. Pol. J. Food Nutr. Sci., 57 (Suppl. 4C): 577–581.]Search in Google Scholar
[Wang X., Fosmire G. J., Gay C. V., Leach R. M. (2002). Short term zinc deficiency inhibits chondrocyte proliferation and induced cell apoptosis in the epiphyseal growth plate of young chickens. J. Nutr., 132: 665–673.]Search in Google Scholar
[Zakaria H. A., Jalal M., Al-Titi H. H., Souad A. (2017). Effect of sources and levels of dietary zinc on the performance, carcass trait and blood parameters of broilers. Brasil. J. Poultry Sci., 19: 519–526.]Search in Google Scholar
[Zhang T. Y., Liu J. L., Zhang N., Yang X., Qu H. X., Xi L., Han J. C. (2018). Effect of dietary zinc levels on the growth performance, organ zinc content, and zinc retention in broiler chickens. Brasil. J. Poultry Sci., 20: 127–132.]Search in Google Scholar
[Zhao C. Y., Tan S. X., Xiao X. Y., Qiu S. X., Pan J. Q., Tang Z. X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res., 160: 361–367.]Search in Google Scholar