1. bookVolume 21 (2021): Issue 2 (April 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Top-dressing of chelated phytogenic feed additives in the diet of lactating Friesian cows to enhance feed utilization and lactational performance

Published Online: 08 May 2021
Volume & Issue: Volume 21 (2021) - Issue 2 (April 2021)
Page range: 657 - 673
Received: 17 Mar 2020
Accepted: 29 Jul 2020
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

The present experiment evaluated the inclusion of chelated phytogenic feed additives mixture in the diet of lactating cows for the first 3 months of lactation. A week before calving, thirty multiparous Friesian cows were divided into three treatments in a complete randomized design and fed a basal diet without supplementation (Control treatment), or the control diet supplemented with chelated phytogenic additives at 3 g (PHY3 treatment), or at 6 g/cow/d (PHY6 treatment). Menthol, levomenthol, β-linaloolm, anethole, hexadecanoic acid and pmenthane were the principal compounds identified in the additives mixture. Milk production, total solid, protein, fat, and lactose were increased with PHY3, but decreased by PHY6 (P<0.01). Whereas the PHY3 treatment increased (P<0.05) milk contents of Ca and Zn, PHY3 and PHY6 treatments increased (P<0.05) milk Fe and Mn concentrations. Though the PHY3 treatment increased (P<0.05) nutrient digestibility, the PHY6 treatment decreased (P<0.05) the digestibility of organic matter, crude protein and neutral detergent fiber. The PHY3 treatment increased (P<0.05) ruminal volatile fatty acids (VFA) concentration and proportional acetate and propionate and decreased butyrate, while the PHY6 treatment decreased ruminal VFA concentration and proportional acetate. The PHY3 treatment increased (P<0.05) serum total protein, glucose, total antioxidant capacity, and the concentrations of Ca and Zn. Both PHY3 and PHY6 treatment decreased (P<0.05) the concentrations of serum triglycerides, and cholesterol. Daily inclusion of 3 g/cow of chelated feed additives mixture in diet of lactating cows improved milk production and ruminal fermentation, but additives dose of 6 g/cow/d had negative impact on cows’ performance.


Agarwal N., Shekhar C., Kumar R., Chaudhary L. C., Kamra D. N. (2009). Effect of peppermint (Mentha piperita) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Feed Sci. Technol., 148: 321–327.Search in Google Scholar

AOAC (1997). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.Search in Google Scholar

Bach A., Pinto A., Blanch M. (2015). Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livest. Sci., 182: 69–75.Search in Google Scholar

Benchaar C., Calsamiglia S., Chaves A. V., Fraser G. R., Colombatto D., Mc Al-lister T. A., Beauchemin K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol., 145: 209–228.Search in Google Scholar

Braun H.-S., Schrapers K.T., Mahlkow-Nerge K., Stumpff F., Rosendahl J. (2019). Dietary supplementation of essential oils in dairy cows: evidence for stimulatory effects on nutrient absorption. Animal, 13: 518–523.Search in Google Scholar

Busquet M., Calsamiglia S., Ferret A., Kamel C. (2006). Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci., 89: 761–771.Search in Google Scholar

Cheong M. W., Chong Z. S., Liu S. Q., Zhou W., Curran P., Yu B., (2012). Characterisation of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chem., 134: 686–695.Search in Google Scholar

Chouhan S., Sharma K., Guleria S. (2017). Antimicrobial activity of some essential oils–present status and future perspectives. Medicines, 4: 58.Search in Google Scholar

Cope C. M., Mackenzie A. M., Wilde D., Sinclair L. A. (2009). Effects of level and form of dietary zinc on dairy cow performance and health. J. Dairy Sci., 92: 2128–2135.Search in Google Scholar

Cortinhas C. S., Botaro B. G., Sucupira M. C. A., Renno F. P., Santos M. V. (2010). Anti-oxidant enzymes and somatic cell count in dairy cows fed with organic source of zinc, copper and selenium. Livest. Sci., 127: 84–87.Search in Google Scholar

Cortinhas C. S., de Freitas Júnior J. E., Naves J. R., Porcionato M. A. F., Sil-va L. F. P., Rennó F. P., dos Santos M. V. (2012). Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition. Rev. Bras. Zootec., 41: 1477–1483.Search in Google Scholar

del Valle T. A., de Jesus E. F., de Paiva P. G., Bettero V. P., Zanferari F., Acedo T. S., Tamassia L. F. M., Rennó F. P. (2015). Effect of organic sources of minerals on fat-corrected milk yield of dairy cows in confinement. Rev. Bras. Zootec., 44: 103–108.Search in Google Scholar

Dunshea F. R., Walker G. P., Williams R., Doyle P. T. (2019). Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agric., 9: 1–17.Search in Google Scholar

Durand M., Kawashima R. (1980). Influence of minerals in rumen microbial digestion. In: Digestive Physiology and Metabolism in Ruminants, Ruckebusch Y., Thivend P. (eds). Springer Netherlands, Netherlands, pp. 375–408.10.1007/978-94-011-8067-2_18Search in Google Scholar

Ebeid H. M., Kholif A. E., Chrenkova M., Anele U.Y. (2020 a). Ruminal fermentation kinetics of Moringa oleifera leaf and seed as protein feeds in dairy cow diets: in sacco degradability and protein and fiber fractions assessed by the CNCPS method. Agrofor. Syst., 94: 905–915.10.1007/s10457-019-00456-7Search in Google Scholar

Ebeid H.M., Mengwei L., Kholif A.E., Hassan F., Lijuan P., Xin L., Chengjian Y. (2020 b). Moringa oleifera oil modulates rumen microflora to mediate in vitro fermentation kinetics and methanogenesis in total mix rations. Curr. Microbiol., 77: 1271–1282.10.1007/s00284-020-01935-232130505Search in Google Scholar

Elcoso G., Zweifel B., Bach A. (2019). Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci., 35: 304–311.Search in Google Scholar

Elghalid O. A., Kholif A. E., El-Ashry G. M., Matloup O. H., Olafadehan O. A., El-Raffa A. M., Abd El-Hady A. M. (2020). Oral supplementation of the diet of growing rabbits with a newly developed mixture of herbal plants and spices enriched with special extracts and essential oils affects their productive performance and immune status. Livest. Sci., 238: 104082.Search in Google Scholar

Etim N. N., Enyenihi G. E., Williams M. E., Udo M. D., Offiong E. E. A. (2013). Haematological parameters: indicators of the physiological status of farm animals. Br. J. Sci., 10: 33–45.Search in Google Scholar

Ferret A., Plaixats J., Caja G., Gasa J., Prió P. (1999). Using markers to estimate apparent dry matter digestibility, faecal output and dry matter intake in dairy ewes fed Italian ryegrass hay or alfalfa hay. Small Rumin. Res., 33: 145–152.Search in Google Scholar

Flora S. J. S., Pachauri V. (2010). Chelation in metal intoxication. Int. J. Environ. Res. Public Health, 7: 2745–2788.Search in Google Scholar

Fuhrman B., Rosenblat M., Hayek T., Coleman R., Aviram M. (2000). Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J. Nutr., 130: 1124–1131.Search in Google Scholar

Giannenas I., Skoufos J., Giannakopoulos C., Wiemann M., Gortzi O., Lalas S., Kyriazakis I. (2011). Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci., 94: 5569–5577.Search in Google Scholar

Khattab M. S. A., El-Zaiat H. M., Abd El Tawab A. M., Matloup O. H., Morsy A. S., Abdou M. M., Ebeid H. M., Attia M. F. A., Sallam S. M. A. (2017). Impact of lemongrass and galangal as feed additives on performance of lactating Barki goats. Int. J. Dairy Sci., 12: 184–189.Search in Google Scholar

Kholif A. E., Abdo M. M., Anele U. Y., El-Sayed M. M., Morsy T.A. (2017 a). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation and lactational performance of Nubian goats. Livest. Sci., 206: 17–23.10.1016/j.livsci.2017.10.002Search in Google Scholar

Kholif A. E., Matloup O. H., Morsy T. A., Abdo M. M., Abu Elella A. A., Anele U. Y., Swanson K. C. (2017 b). Rosemary and lemongrass herbs as phytogenic feed additives to improve efficient feed utilization, manipulate rumen fermentation and elevate milk production of Damascus goats. Livest. Sci., 204: 39–46.10.1016/j.livsci.2017.08.001Search in Google Scholar

Kholif A. E., Gouda G. A., Anele U. Y., Galyean M.L. (2018 a). Extract of Moringa oleifera leaves improves feed utilization of lactating Nubian goats. Small Rumin. Res., 158: 69–75.10.1016/j.smallrumres.2017.10.014Search in Google Scholar

Kholif A. E., Gouda G. A., Olafadehan O. A., Abdo M.M. (2018 b). Effects of replacement of Moringa oleifera for berseem clover in the diets of Nubian goats on feed utilisation, and milk yield, composition and fatty acid profile. Animal, 12: 964–972.10.1017/S175173111700233628988560Search in Google Scholar

Kholif A. E., Kassab A. Y., Azzaz H. H., Matloup O. H., Hamdon H. A., Olafade-han O. A., MorsyT.A. (2018 c). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Rumin. Res., 161: 43–50.10.1016/j.smallrumres.2018.02.011Search in Google Scholar

Kholif A. E., Gouda G. A., Galyean M. L., Anele U. Y., Morsy T. A. (2019). Extract of Moringa oleifera leaves increases milk production and enhances milk fatty acid profile of Nubian goats. Agrofor. Syst., 93: 1877–1886.Search in Google Scholar

Kholif A. E., Hamdon H. A., Kassab A. Y., Farahat E. S. A., Azzaz H. H., Matloup O. H., Mohamed A. G., Anele U. Y. (2020). Chlorella vulgaris microalgae and/or copper supplementation enhanced feed intake, nutrient digestibility, ruminal fermentation, blood metabolites and lactational performance of Boer goat. J. Anim. Physiol. Anim. Nutr. (Berl), 104: 1595–1605.Search in Google Scholar

Kholif A. E., Hassan A. A., El Ashry G. M., Bakr M. H., El-Zaiat H. M., Olafade-han O. A., Matloup O. H., Sallam S. M. A. (2021). Phytogenic feed additives mixture enhances the lactational performance, feed utilization and ruminal fermentation of Friesian cows. Anim. Biotechnol. In press; https://doi.org/10.1080/10495398.2020.174632210.1080/10495398.2020.174632232248772Search in Google Scholar

Kim H., Jung E., Lee H. G., Kim B., Cho S., Lee S., Kwon I., Seo J. (2019). Essential oil mixture on rumen fermentation and microbial community – An in vitro study. Asian-Australas. J. Anim. Sci., 32: 808–814.Search in Google Scholar

Kinal S., Korniewicz D., Jamroz D., Korniewicz A., Stupczyńska M., Bodar-ski R., Ziemiński R., Osięglowski S., Dymarski I. (2007). The effectiveness of zinc, copper and manganese applied in organic forms in diets of high milk yielding cows. J. Food Agric. Environ., 5: 189–193.Search in Google Scholar

Kotsampasi B., Tsiplakou E., Christodoulou C., Mavrommatis A., Mitsiopou-lou C., Karaiskou C., Sossidou E., Fragioudakis N., Kapsomenos I., Bam-pidis V. A., Christodoulou V., Zervas G. (2018). Effects of dietary orange peel essential oil supplementation on milk yield and composition, and blood and milk antioxidant status of dairy ewes. Anim. Feed Sci. Technol., 245: 20–31.Search in Google Scholar

Lakhani N., Kamra D. N., Lakhani P., Alhussien M. N. (2019). Immune status and haemato-biochemical profile of buffalo calves supplemented with phytogenic feed additives rich in tannins, saponins and essential oils. Trop. Anim. Health Prod., 51: 565–573.Search in Google Scholar

Lee K. -W., Everts H., Beynen A. C. (2004). Essential oils in broiler nutrition. Int. J. Poult. Sci., 3: 738–752.Search in Google Scholar

Linn J. G. (1988). Factors affecting the composition of milk from dairy cows. In: Designing Foods: Animal Product Options in the Marketplace. National Academy of Sciences, Washington, DC, USA, pp. 224–241.Search in Google Scholar

Malcolm-Callis K. J., Duff G. C., Gunter S. A., Kegley E. B., Vermeire D. A. (2000). Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. J. Anim. Sci., 78: 2801.Search in Google Scholar

Martín-Tereso J., Martens H. (2014). Calcium and magnesium physiology and nutrition in relation to the prevention of milk fever and tetany (dietary management of macrominerals in preventing disease). Vet. Clin. North Am. Food Anim. Pract., 30: 643–670.Search in Google Scholar

Matloup O. H., Abd El Tawab A. M., Hassan A. A., Hadhoud F. I., Khattab M. S. A., Khalel M. S., Sallam S. M. A., Kholif A. E. (2017). Performance of lactating Friesian cows fed a diet supplemented with coriander oil: Feed intake, nutrient digestibility, ruminal fermentation, blood chemistry, and milk production. Anim. Feed Sci. Technol., 226: 88–97.Search in Google Scholar

Mbuh J. V., Mbwaye J. (2005). Serological changes in goats experimentally infected with Fasciola gigantica in Buea sub-division of S.W.P. Cameroon. Vet. Parasitol., 131: 255–259.Search in Google Scholar

Morsy T. A., Kholif S. M., Kholif A. E., Matloup O. H., Salem A. Z. M., Abu Elella A. (2015). Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition, and fatty acid profile in lactating goats. Asian-Australas. J. Anim. Sci., 28: 1116–1122.Search in Google Scholar

Morsy T. A., Kholif A. E., Matloup O. H., Abu Elella A., Anele U. Y., Caton J. S. (2018). Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res., 85: 142–151.Search in Google Scholar

Mudita I. M., Wirawan I. W., Cakra I. G. L. O., Partama I. B. G. (2014). Optimising rumen function of Bali cattle fed ration based on agriculture by-products with supplementation of multivitamins-minerals. Int. J. Pure Appl. Biosci., 2: 36–45.Search in Google Scholar

Nemec L. M., Richards J. D., Atwell C. A., Diaz D. E., Zanton G. I., Gressley T. F. (2012). Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. J. Dairy Sci., 95: 4568–4577.Search in Google Scholar

NRC (2001). Nutrient Requirements of Dairy Cattle, 7th ed. National Academies Press, Washington, D.C., USA.Search in Google Scholar

Patra A. K., Yu Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78: 4271–4280.Search in Google Scholar

Patra A. K., Park T., Braun H. S., Geiger S., Pieper R., Yu Z., Aschenbach J. R. (2019). Dietary bioactive lipid compounds rich in menthol alter interactions among members of ruminal microbiota in sheep. Front. Microbiol., 10: 2038.Search in Google Scholar

Pettersson J., Hindorf U., Persson P., Bengtsson T., Malmqvist U., Werks-tröm V., Ekelund M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. Br. J. Clin. Pharmacol., 65: 253–259.Search in Google Scholar

Pino F., Heinrichs A. J. (2016). Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. J. Dairy Sci., 99: 2797–2810.Search in Google Scholar

Rabiee A. R., Lean I. J., Stevenson M. A., Socha M. T. (2010). Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. J. Dairy Sci., 93: 4239–4251.Search in Google Scholar

Rivero N., Salem A. Z. M., Ayala M., Elghandour M. M. Y., Kholif A. E., Barbabo-sa A., Camacho L. M., Rojas S., Olivares J., Cipriano M. (2016). Influence of Salix babylonica extract, exogenous enzyme of xylanase and their combination on blood haematological and biochemical profile in sheep and goats. Indian J. Anim. Sci., 86: 1140–1144.Search in Google Scholar

Salem A. Z. M., Elghandour M. M. Y., Kholif A. E., López S., Pliego A. B., Cipriano--Salazar M., Chagoyán J. C. V., de Oca Jiménez R. M., Alonso M. U. (2017). Tree leaves of Salix babylonica extract as a natural anthelmintic for small-ruminant farms in a semiarid region in Mexico. Agrofor. Syst., 91: 111–122.Search in Google Scholar

Sales J., Janssens G. (2003). Acid-insoluble ash as a marker in digestibility studies: a review. J. Anim. Feed Sci., 12: 383–401.Search in Google Scholar

Santos M. B., Robinson P. H., Williams P., Losa R. (2010). Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed Sci. Technol., 157: 64–71.Search in Google Scholar

Satter L. D., Slyter L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr., 32: 199–208.Search in Google Scholar

Sjaunja L. O., Baevre L., Junkkarinen L., Pedersen J., Setala J. (1991). A Nordic proposal for an energy corrected milk (ECM) formula: performance recording of animals. State of the art. EAAP Publ., 50: 156–157.Search in Google Scholar

Van Soest P. J., Robertson J. B., Lewis B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.Search in Google Scholar

Wadhwa M., Bakshi M. P. S., Makkar H. P. S. (2016). Modifying gut microbiomes in large ruminants: Opportunities in non-intensive husbandry systems. Anim. Front., 6: 27.Search in Google Scholar

Yang W. Z., He M. L. (2016). Effects of feeding garlic and juniper berry essential oils on milk fatty acid composition of dairy cows. Nutr. Metab. Insights, 9: 19–24.Search in Google Scholar

Zhao X. J., Li Z. P., Wang J. H., Xing X. M., Wang Z. Y., Wang L., Wang Z. H. (2015). Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci., 16: 439–446.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo