Open Access

Enrichment of common carp (Cyprinus carpio) diet with Malic acid: Effects on skin mucosal immunity, antioxidant defecne and growth performance


Cite

Baruah S. K., Norouzitallab P., Debnath D., Pal A., Sahu N. (2008). Organic acids as non-antibiotic nutraceuticals in fish and prawn feed. Aquacult. Health Int., 4–6.Search in Google Scholar

Bjerkeng B., Storebakken T., Wathne E. (1999). Cholesterol and short-chain fatty acids in diets for Atlantic salmon Salmo salar (L.): effects on growth, organ indices, macronutrient digestibility, and fatty acid composition. Aquacult. Nutr., 5: 181–192.Search in Google Scholar

Chen Y. J., Luo L., Zhang G. Z., Li Z., Bai F. J., Shi Y. Q., Yang H. S. (2016). Effect of dietary L-malic acid supplementation on growth, feed utilization and digestive function of juvenile GIFT tilapia Oreochromis niloticus (Linnaeus, 1758). J. Appl. Ichthyol., 32: 1118–1123.Search in Google Scholar

Chen Y. J., Zhang T. Y., Luo L., Shi Y. Q., Bai F. J., Jiang D. N. (2017). Impact of dietary L-malic acid supplementation on growth, feed utilization, ash deposition, and hepatic lipid metabolism of juvenile genetically improved farmed tilapia, Oreochromis niloticus. J. World Aquacult. Soc., 48: 563–573.Search in Google Scholar

Chuchird N., Rorkwiree P., Rairat T. (2015). Effect of dietary formic acid and astaxanthin on the survival and growth of Pacific white shrimp (Litopenaeus vannamei) and their resistance to Vibrio parahaemolyticus. SpringerPlus, 4: 440.Search in Google Scholar

da Silva B. C., do Nascimento Vieira F., Mouriño J. L. P., Ferreira G. S., Seif-fert W. Q. (2013). Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture, 384: 104–110.Search in Google Scholar

Dawood M. A. O., Koshio S., Esteban M. Á. (2017). Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev. Aquacult., 10: 950–974.Search in Google Scholar

De Wet L. (2005). Organic acids as performance enhancers. Aqua Feeds: Form. Beyond, 2: 12–14.Search in Google Scholar

El-Zaiat H. M., Kholif A. E., Mohamed D. A., Matloup O. H., Anele U. Y., Sallam S. M. (2019). Enhancing lactational performance of Holstein dairy cows under commercial production: malic acid as an option. J. Sci. Food Agric., 99: 885–892.Search in Google Scholar

Elala N. M. A., Ragaa N. M. (2015). Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. J. Adv. Res., 6: 621–629.Search in Google Scholar

Encarnação P. (2016). Functional feed additives in aquaculture feeds. In: Aquafeed Formulation. Elsevier, pp. 217–237.10.1016/B978-0-12-800873-7.00005-1Search in Google Scholar

Eshaghzadeh H., Hoseinifar S. H., Vahabzadeh H., Ringø E. (2015). The effects of dietary inulin on growth performances, survival and digestive enzyme activities of common carp (Cyprinus carpio) fry. Aquacult. Nutr., 21: 242–247.Search in Google Scholar

Gao Y., Storebakken T., Shearer K. D., Penn M., Øverland M. (2011). Supplementation of fishmeal and plant protein-based diets for rainbow trout with a mixture of sodium formate and butyrate. Aquaculture, 311: 233–240.Search in Google Scholar

Hassaan M., Wafa M., Soltan M., Goda A., Mogheth N. (2014). Effect of dietary organic salts on growth, nutrient digestibility, mineral absorption and some biochemical indices of Nile tilapia, Oreochromis niloticus L. fingerlings. World Appl. Sci. J., 29: 47–55.Search in Google Scholar

Hassaan M., Soltan M., Jarmołowicz S., Abdo H. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 24: 83–93.Search in Google Scholar

Hoseinifar S. H., Zoheiri F., Caipang C. M. (2016). Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol., 55: 523–528.Search in Google Scholar

Hoseinifar S. H., Dadar M., Khalili M., Cerezuela R., Esteban M. Á. (2017 a). Effect of dietary supplementation of palm fruit extracts on the transcriptomes of growth, antioxidant enzyme and immune-related genes in common carp (Cyprinus carpio) fingerlings. Aquacult. Res., 48: 3684–3692.10.1111/are.13192Search in Google Scholar

Hoseinifar S. H., Safari R., Dadar M. (2017 b). Dietary sodium propionate affects mucosal immune parameters, growth and appetite related genes expression: Insights from zebrafish model. Gen. Comp. Endocrinol., 243: 78–83.10.1016/j.ygcen.2016.11.00827838381Search in Google Scholar

Koh C. B., Romano N., Zahrah A. S., Ng W. K. (2016). Effects of a dietary organic acids blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquacult. Res., 47: 357–369.Search in Google Scholar

Luckstadt C. (2008). The use of acidifiers in fish nutrition. Persp. Agricult. Vet. Sci. Nutr. Nat. Res., 3: 1–8.Search in Google Scholar

Luger T. A., Schwarz T. (1990). Evidence for an epidermal cytokine network. J. Invest. Derm., 95: S100–S104.Search in Google Scholar

Mansouri Taee H., Hajimoradloo A., Hoseinifar S. H., Ahmadvand H. (2017). Dietary Myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Shellfish Immunol., 64: 320–324.Search in Google Scholar

Morales G., Denstadli V., Collins S., Mydland L., Moyano F., Øverland M. (2016). Phytase and sodium diformate supplementation in a plant-based diet improves protein and mineral utilization in rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 22: 1301–1311.Search in Google Scholar

Morken T., Kraugerud O. F., Barrows F. T., Sørensen M., Storebakken T., Øver-land M. (2011). Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss). Aquaculture, 317: 138–145.Search in Google Scholar

Ng W. K., Koh C. B., Sudesh K., Siti-Zahrah A. (2009). Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquacult. Res., 40: 1490–1500.Search in Google Scholar

Nickoloff B. J. (1991). The cytokine network in psoriasis. Archiv. Dermatol., 127: 871–884.Search in Google Scholar

Petkam R., Luckstadt C., Nittayachit P., Sadao S., Encarnacao P. (2008). Evaluation of a dietary organic acid blend on tilapia Oreochromis niloticus growth performance. Busan, Korea: World Aquacult.Search in Google Scholar

Ranjit Kumar N., Prasanna Kumar P., Siddaiah G., Murugadas V., Basha K., Si-varaman G., Prasad M. (2018). Effect of different organic acids on survival of larvae and control of water microflora in milk fish (Chanos chanos) hatchery system. Fish. Technol., 55: 128–137.Search in Google Scholar

Ricke S. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci., 82: 632–639.Search in Google Scholar

Romano N., Koh C. -B., Ng W. -K. (2015). Dietary microencapsulated organic acids blend enhances growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, 435: 228–236.Search in Google Scholar

Safari R., Hoseinifar S.H., Nejadmoghadam S., Khalili M. (2017 a). Apple cider vinegar boosted immunomodulatory and health promoting effects of Lactobacillus casei in common carp (Cyprinus carpio). Fish Shellfish Immunol., 67: 441–448.10.1016/j.fsi.2017.06.01728602743Search in Google Scholar

Safari R., Hoseinifar S.H., Nejadmoghadam S., Khalili M. (2017 b). Non-specific immune parameters, immune, antioxidant and growth-related genes expression of common carp (Cyprinus carpio L.) fed sodium propionate. Aquacult. Res., 48: 4470–4478.10.1111/are.13272Search in Google Scholar

Secombes C., Hardie L., Daniels G. (1996). Cytokines in fish: an update. Fish Shellfish Immunol., 6: 291–304.Search in Google Scholar

Siwicki A. K., Anderson D. P. (1993). Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. Fish Dis. Diag. Prev. Meth., Olsztyn, Poland, pp. 105–112.Search in Google Scholar

Sniffen C., Ballard C., Carter M., Cotanch K., Dann H., Grant R., Mandebvu P., Suekawa M., Martin S. (2006). Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim. Feed Sci. Technol., 127: 13–31.Search in Google Scholar

Su X., Li X., Leng X., Tan C., Liu B., Chai X., Guo T. (2014). The improvement of growth, digestive enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquacult. Int., 22: 1823–1835.Search in Google Scholar

Subramanian S., Mac Kinnon S. L., Ross N. W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 148: 256–263.Search in Google Scholar

Van Doan H., Hoseinifar S. H., Ringø E., Ángeles Esteban M., Dadar M., Da-wood M. A. O., Faggio C. (2019). Host-associated probiotics: a key factor in sustainable aqua-culture. Rev. Fish. Sci. Aquacult., 28: 16–42.Search in Google Scholar

Yanbo W., Zirong X. (2006). Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim. Feed Sci. Technol., 127: 283–292.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine