Cite

Adámek M., Mlček J., AdámkováA., BorkovcováM., BednářováM., MusilováZ., Skácel J., Sochor J., Faměra O.(2019). Unusual aspects of the fat content of mealworm larvae as a novel food. Potr. Slovak J. Food Sci., 13: 157–162.10.5219/1089Search in Google Scholar

AdámkováA., KouřimskáL., BorkovcováM., Kulma M., Mlček J.(2016). Nutritional values of edible Coleoptera (Tenebrio molitor, Zophobas morio and Alphitobius diaperinus) reared in the Czech Republic. Potravinarstvo, 10: 663–671.10.5219/609Search in Google Scholar

AdámkováA., Mlček J., KouřimskáL., BorkovcováM., Bušina T., Adámek M., BednářováM., Krajsa J.(2017). Nutritional potential of selected insect species reared on the island of Sumatra. Int. J. Environ. Res. Public Health, 14: 521.10.3390/ijerph14050521Search in Google Scholar

Alifian M.D., Sholikin M.M., Evvyernie D.(2019). Potential fatty acid composition of Hermetia illucens oil reared on different substrates. In IOP Conference Series: Materials Science and Engineering. IOP Publishing. 546: 062002.10.1088/1757-899X/546/6/062002Search in Google Scholar

Alves A.V., Sanjinez-Argandoña E.J., Linzmeier A.M., Cardoso C.A.L., Macedo M.L.R.(2016). Food value of mealworm grown on Acrocomia aculeata pulp flour. PLoS One, 14: 11.10.1371/journal.pone.0151275Search in Google Scholar

Arrese E.L., Soulages J.L.(2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol., 55: 207–225.10.1146/annurev-ento-112408-085356Search in Google Scholar

Bailey E.(1975). Biochemistry of insect flight: fuel supply. In: Insect Biochemistry and Function. London, The UK, Chapman & Hall, pp. 89–176.10.1007/978-1-4899-3204-4_2Search in Google Scholar

Barker D., Fitzpatrick M.P., Dierenfeld E.S.(1998). Nutrient composition of selected whole invertebrates. Zoo Biol., 17: 123–134.10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-BSearch in Google Scholar

Barragan-Fonseca K.B., Dicke M., van Loon J.J.(2018). Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl., 166: 761–770.10.1111/eea.12716Search in Google Scholar

Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C.(2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.10.1016/j.aquaculture.2013.12.024Search in Google Scholar

Barroso F.G., Sánchez-Muros M.J., Segura M., Morote E., Torres A., Ramos R., Guil J.L.(2017). Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compost. Anal., 62: 8–13.10.1016/j.jfca.2017.04.008Search in Google Scholar

Belghit I., Liland N.S., WaagbøR., Biancarosa I., Pelusio N., Li Y., KrogdahlÅ., Lock E.J.(2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.10.1016/j.aquaculture.2018.03.016Search in Google Scholar

Benzertiha A., Kierończyk B., Rawski M., Kołodziejski P., Bryszak M., Józefiak D.(2019). Insect oil as an alternative to palm oil and poultry fat in broiler chicken nutrition. Animals, 9: 1–16.10.3390/ani9030116Search in Google Scholar

Canavoso L.E., Jouni Z.E., Karnas K.J., Pennington J.E., Wells M.A.(2001). Fat metabolism in insects. Annu. Rev. Nutr., 21: 23–46.10.1146/annurev.nutr.21.1.23Search in Google Scholar

Chapman R.F.(1998). The Insects: Structure and Function. Cambridge University Press: Cambridge, UK, 4th ed., pp. 1–770.10.1017/CBO9780511818202Search in Google Scholar

Chen H., Tian J., Wang Y., Yang K., Ji H., Li J.(2017). Effects of dietary soybean oil replacement by silkworm, Bombyx mori L., chrysalis oil on growth performance, tissue fatty acid composition, and health status of juvenile Jian carp, Cyprinus carpio var. Jian. J. World Aquac. Soc., 48: 453–466.10.1111/jwas.12373Search in Google Scholar

Chieco C., Morrone L., Bertazza G., Cappellozza S., Saviane A., Gai F., Di Virgilio N., Rossi F.(2019). The effect of strain and rearing medium on the chemical composition, fatty acid profile and carotenoid content in silkworm (Bombyx mori) pupae. Animals, 9: 103.10.3390/ani9030103Search in Google Scholar

Cullere M., Tasoniero G., Giaccone V., Miotti-Scapin R., Claeys E., De Smet S., Dalle Zotte A.(2016). Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal, 10: 1923–1930.10.1017/S1751731116001270Search in Google Scholar

Cullere M., Tasoniero G., Giaccone V., Acuti G., Marangon A., Dalle Zotte A.(2017). Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal, 12: 640–647.10.1017/S1751731117001860Search in Google Scholar

Cullere M., Schiavone A., Dabbou S., Gasco L., Dalle Zotte A.(2019a). Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals, 9: 140.10.3390/ani9040140652376430986996Search in Google Scholar

Cullere M., Woods M.J., van Emmenes L., Pieterse E., Hoffman L.C., Dalle Zotte A.(2019b). Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on physicochemical and sensory quality of the quail meat. Animals, 9: 525.10.3390/ani9080525672097231382479Search in Google Scholar

Dalle Zotte A., Cullere M., Martins C., Alves S.P., Freire J.P., Falcão-e-Cunha L., Bessa R.J.(2018). Incorporation of Black Soldier Fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci., 146: 50–58.10.1016/j.meatsci.2018.08.002Search in Google Scholar

Dalle Zotte A., Singh Y., Michiels J., Cullere M.(2019). Black soldier fly (Hermetia illucens) as dietary source for laying quails: live performance, and egg physico-chemical quality, sensory profile and storage stability. Animals, 9: 115.10.3390/ani9030115Search in Google Scholar

Danieli P.P., Lussiana C., Gasco L., Amici A., Ronchi B.(2019). The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals, 9: 178.10.3390/ani9040178Search in Google Scholar

Dayrit F.M.(2014). Lauric acid is a medium-chain fatty acid, coconut oil is a medium-chain triglyceride. Philipp. J. Sci., 143: 157–166.Search in Google Scholar

Dayrit F.M.(2015). The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc., 92: 1–15.10.1007/s11746-014-2562-7Search in Google Scholar

De Lany J.P., Windhauser M.M., Champagne C.M., Bray G.A.(2000). Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr., 72: 905–911.10.1093/ajcn/72.4.905Search in Google Scholar

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V.(2017). Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids, 52: 285–294.10.1007/s11745-016-4220-3Search in Google Scholar

Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E.(2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34.10.1016/j.aquaculture.2018.03.038Search in Google Scholar

Ekpo K.E., Onigbinde A.O., Asia I.O.(2009). Pharmaceutical potentials of the oils of some popular insects consumed in southern Nigeria. Afr. J. Pharm. Pharmacol., 3: 51–57.Search in Google Scholar

Ewald N., Vidakovic A., Langeland M., Kiessling A., Sampels S., Lalander C.(2020). Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Manag., 102: 40–47.10.1016/j.wasman.2019.10.014Search in Google Scholar

Finke M.D.(2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol., 21: 269–285.10.1002/zoo.10031Search in Google Scholar

Finke M.D.(2015). Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol., 34: 554–564.10.1002/zoo.21246Search in Google Scholar

Fontaneto D., Tommaseo-Ponzetta M., Galli C., RiséP., Glew R.H., Paoletti M.G.(2011). Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr., 50: 351–367.10.1080/03670244.2011.586316Search in Google Scholar

Francardi V., Cito A., Fusi S., Botta M., Dreassi E.(2017). Linseed to increase n-3 fatty acids in Tenebrio molitor (Coleoptera Tenebrionidae). Redia, 100: 73–76.10.19263/REDIA-100.17.08Search in Google Scholar

Gasco L., Finke M., Van Huis A.(2018). Can diets containing insects promote animal health? J. Insects Food Feed, 4: 1–4.10.3920/JIFF2018.x001Search in Google Scholar

Gasco L., Dabbou S., Gai F., Brugiapaglia A., Schiavone A., Birolo M., Xiccato G., Trocino A.(2019a). Quality and consumer acceptance of meat from rabbits fed diets in which soybean oil is replaced with black soldier fly and yellow mealworm fats. Animals, 9: 629.10.3390/ani9090629677049031470627Search in Google Scholar

Gasco L., Dabbou S., Trocino A., Xiccato G., Capucchio M.T., Biasato I., Dezzutto D., Birolo M., Meneguz M., Schiavone A., Gai F.(2019b). Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol., 10: 4. doi. https://doi.org/10.1186/s40104-018-0309-2.10.1186/s40104-018-0309-2633783730675348Search in Google Scholar

Gasco L., Biasato I., Dabbou S., Schiavone A., Gai F.(2019c). Animals fed insect-based diets: State-of-the-art on digestibility, performance and product quality. Animals, 9: 170.10.3390/ani9040170652361930995783Search in Google Scholar

Harlystiarini H., Mutia R., Wibawan I.W.T., Astuti D.A.(2020). Immune responses and egg productions of quails fed rations supplemented with larvae meal of black soldier fly (Hermetia illucens). Trop. Life Sci. Res., 43: 43–49.10.5398/tasj.2020.43.1.43Search in Google Scholar

Heuel M., Sandrock C., Mathys A., Gold M., Zurbrügg C., Kreuzer M., Terranova M.(2019). Performance of laying hens when replacing soybean cake and oil by insect larval protein meal and fat. In: EAAP Scientific Series, The Netherlands, Wageningen Academic Publishers, 83–90 pp.10.3920/978-90-8686-891-9_29Search in Google Scholar

Heugten E.V., Martinez G., Mc Comb A., Koutsos E.(2019). Black soldier fly (Hermetia illucens) larvae oil improves growth performance of nursery pigs. J. Anim. Sci., 97: 118–118.10.1093/jas/skz258.244Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S,. Mazurkiewicz J.(2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598.10.2478/aoas-2020-0002Search in Google Scholar

Iaconisi V., Marono S., Parisi G., Gasco L., Genovese L., Maricchiolo G., Bovera F., Piccolo G.(2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476: 49–58.10.1016/j.aquaculture.2017.04.007Search in Google Scholar

James N.(2019). Southeast Asia’s formula for top ornamental fish. Farmer’s Weekly. 2019: 28–28.Search in Google Scholar

Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J.(2019a). The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: The effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765.10.2478/aoas-2019-0020Search in Google Scholar

Józefiak A., Nogales-Mérida S., Rawski M., Kierończyk B., Mazurkiewicz J.(2019b). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res., 15: 348.10.1186/s12917-019-2070-y679850931623627Search in Google Scholar

Jucker C., Erba D., Leonardi M.G., Lupi D., Savoldelli S.(2017). Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (Diptera: Stratiomyidae) larvae. Environ. Entomol., 46: 1415–1423.10.1093/ee/nvx154Search in Google Scholar

Kasumyan A.(2018). Olfaction and gustation in Acipenseridae, with special references to the Siberian sturgeon. In: The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 – Biology. New York, Springer-Verlag, pp. 173–205.10.1007/978-3-319-61664-3_10Search in Google Scholar

Khatibjoo A., Mahmoodi M., Fattahnia F., Akbari-Gharaei M., Shokri A.N., Soltani S.(2018). Effects of dietary short-and medium-chain fatty acids on performance, carcass traits, jejunum morphology, and serum parameters of broiler chickens. J. Appl. Anim. Res., 46: 492–498.10.1080/09712119.2017.1345741Search in Google Scholar

Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D.(2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002Search in Google Scholar

Kierończyk B., Sypniewski J., Rawski M., Czekała W., Świątkiewicz S., Józefiak D.(2020). From waste to sustainable feed material: the effect of Hermetia illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci., 20: 157–177.10.2478/aoas-2019-0066Search in Google Scholar

Kim S.W., Jung T.S., Ha Y.J., Gal S.W., Noh C.W., Kim I.S., Lee J.H., Yoo J.H.(2019). Removal of fat from crushed black soldier fly larvae by carbon dioxide supercritical extraction. J. Anim. Feed Sci., 28: 83–88.10.22358/jafs/105132/2019Search in Google Scholar

Kim Y.B., Kim D.H., Jeong S.B., Lee J.W., Kim T.H., Lee H.G., Lee K.W.(2020). Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poultry Sci., doi: https://doi.org/10.1016/j.psj.2020.01.018.10.1016/j.psj.2020.01.018759763732475450Search in Google Scholar

Li S., Ji H., Zhang B., Tian J., Zhou J., Yu H.(2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 465: 43–52.10.1016/j.aquaculture.2016.08.020Search in Google Scholar

Liland N.S., Biancarosa I., Araujo P., Biemans D., Bruckner C.G., WaagbøR., Torstensen B.E., Lock E.J.(2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PloS One, 12: e0183188.10.1371/journal.pone.0183188Search in Google Scholar

Liu X., Chen X., Wang H., Yang Q., ur Rehman K., Li W., Cai M., Li Q., Mazza L., Zhang J., Yu Z., Zheng L.(2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One, 12(8), e0182601.10.1371/journal.pone.0182601555216428796830Search in Google Scholar

Lorenz M.W.(2001). Synthesis of lipids in the fat body of Gryllus bimaculatus: Age-dependency and regulation by adipokinetic hormone. Arch. Insect Biochem. Physiol., 47: 198–214.10.1002/arch.1052Search in Google Scholar

Martins C., Cullere M., Dalle Zotte A., Cardoso C., Alves S.P., Bessa R.J.B., Freire J.P.B., Falcão-e-Cunha L.(2018). Incorporation of two levels of black soldier fly (Hermetia illucens L.) larvae fat or extruded linseed in diets of growing rabbits: effects on growth performance and diet digestibility. Czech J. Anim. Sci., 63: 356–362.10.17221/22/2018-CJASSearch in Google Scholar

Megido R.C., Poelaert C., Ernens M., Liotta M., Blecker C., Danthine S., Tyteca E., HaubrugeÉ., Alabi T., Bindelle J., Francis F.(2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res. Int., 106: 503–508.10.1016/j.foodres.2018.01.002Search in Google Scholar

Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L.(2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric., 98: 5776–5784.10.1002/jsfa.9127Search in Google Scholar

Mentang F., Maita M., Ushio H., Ohshima T.(2011). Efficacy of silkworm (Bombyx mori L.) chrysalis oil as a lipid source in adult Wistar rats. Food Chem., 127: 899–904.10.1016/j.foodchem.2011.01.045Search in Google Scholar

Mlcek J., AdámkováA., Adámek M., Borkovcova M., Bednarova M., Knizkova I.(2019). Fat from Tenebrionidae bugs – sterols content, fatty acid profiles, and cardiovascular risk indexes. Pol. J. Food Nutr. Sci., 69: 247–254.10.31883/pjfns/109666Search in Google Scholar

Motte C., Rios A., Lefebvre T., Do H., Henry M., Jintasataporn O.(2019). Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9: 258.10.3390/ani9050258Search in Google Scholar

Müller A., Wolf D., Gutzeit H.O.(2017). The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch., C.J. Biosci. 72: 351–363.10.1515/znc-2017-0030Search in Google Scholar

Mungkung R., Aubin J., Prihadi T.H., Slembrouck J., vander Werf H.M., Legendre M.(2013). Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J. Clean. Prod., 57: 249–256.10.1016/j.jclepro.2013.05.029Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A.(2018). Insect meals in fish nutrition. Rev. Aquacult. 10: 1–24.10.1111/raq.12281Search in Google Scholar

Oonincx D.G.A.B., Dierenfeld E.S.(2012). An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 31: 40–54.10.1002/zoo.20382Search in Google Scholar

Oonincx D.G., Van Broekhoven S., Van Huis A., van Loon J.J.(2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 10: e0144601.10.1371/journal.pone.0144601Search in Google Scholar

Oonincx D.G., van Broekhoven S., van Huis A., van Loon J.J.(2019). Correction: feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS One, 14: e0222043.10.1371/journal.pone.0222043Search in Google Scholar

Paul A., Frederich M., Megido R.C., Alabi T., Malik P., Uyttenbroeck R., Francis F., Blecker C., Haubruge E., Lognay G., Danthine S.(2017). Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol., 20: 337–340.10.1016/j.aspen.2017.02.001Search in Google Scholar

Pereira N.R., Ferrarese-Filho O., Matsushita M., de Souza N.E.(2003). Proximate composition and fatty acid profile of Bombyx mori L. chrysalis toast. J. Food Compost. Anal., 16: 451–457.10.1016/S0889-1575(03)00016-4Search in Google Scholar

Pinotti L., Giromini C., Ottoboni M., Tretola M., Marchis D.(2019). Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal, 13: 1365–1375.10.1017/S1751731118003622Search in Google Scholar

Pontes E.G., Leite P., Majerowicz D., Atella G.C., Gondim K.C.(2008). Dynamics of lipid accumulation by the fat body of Rhodnius prolixus: the involvement of lipophorin binding sites. J. Insect Physiol., 54: 790–797.10.1016/j.jinsphys.2008.02.003Search in Google Scholar

Purschke B., Stegmann T., Schreiner M., Jäger H.(2017). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur. J. Lipid Sci. Technol., 119: 1600134.10.1002/ejlt.201600134Search in Google Scholar

Ravindran V., Tancharoenrat P., Zaefarian F., Ravindran G.(2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Tech., 213: 1–21.10.1016/j.anifeedsci.2016.01.012Search in Google Scholar

Ravzanaadii N., Kim S.H., Choi W.H., Hong S.J., Kim N.J.(2012). Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Indust. Entomol., 25: 93–98.10.7852/ijie.2012.25.1.093Search in Google Scholar

Rawski M., Mans C., Kierończyk B., Świątkiewicz S., Barc A., Józefiak D.(2018). Freshwater turtle nutrition – a review of scientific and practical knowledge. Ann. Anim. Sci., 18: 17–37.10.1515/aoas-2017-0025Search in Google Scholar

Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M.(2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 57.10.1186/s40104-017-0191-3Search in Google Scholar

Rumpold B.A., Schlüter O.K.(2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.10.1002/mnfr.201200735Search in Google Scholar

Ruschioni S., Loreto N., Foligni R., Mannozzi C., Raffaelli N., Zamporlini F., Pasquini M., Roncolini A., Cardinali F., Osimani A., Aquilanti L.(2020). Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) Larvae. Foods, 9: 317.10.3390/foods9030317Search in Google Scholar

Schiavone A., Cullere M., De Marco M., Meneguz M., Biasato I., Bergagna S., Dezzutto D., Gai F., Dabbou S., Gasco L., Dalle Zotte A.(2017). Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances feed-choice blood traits carcass characteristics and meat quality. Ital. J. Anim. Sci., 16: 1–8.10.1080/1828051X.2016.1249968Search in Google Scholar

Schiavone A., Dabbou S., De Marco M., Cullere M., Biasato I., Biasibetti E., Capucchio M.T., Bergagna S., Dezzutto D., Meneguz M., Gai F., Dalle Zotte A., Gasco L.(2018). Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12: 2032–2039.10.1017/S1751731117003743Search in Google Scholar

Shurson G.C., Kerr B.J., Hanson A.R.(2015). Evaluating the quality of feed fats and oils and their effects on pig growth performance. J. Anim. Sci. Biotechnol., 6: 10–21.10.1186/s40104-015-0005-4Search in Google Scholar

Siemianowska E., Kosewska A., Aljewicz M., Skibniewska K.A., Polak-Juszczak L., Jarocki A., Jedras M.(2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agric. Sci., 4: 287–291.10.4236/as.2013.46041Search in Google Scholar

Smets R., Verbinnen B., Van De Voorde I., Aerts G., Claes J., Van Der Borght M.(2020). Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valor., 7: 1–12.10.1007/s12649-019-00924-2Search in Google Scholar

Sosa D.A.T., Fogliano V.(2017). Potential of insect-derived ingredients for food applications. In: Insect Physiology and Ecology, Shields V.D.C. (ed.). InTechOpen, Rijeka, Croatia, pp. 215–231.10.5772/67318Search in Google Scholar

Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S.(2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97: 2594–2600.10.1002/jsfa.8081Search in Google Scholar

St-Hilaire S., Cranfill K., Mc Guire M.A., Mosley E.E., Tomberlin J.K., Newton L., Sealey W., Sheppard C., Irving S.(2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc., 38: 309–313.10.1111/j.1749-7345.2007.00101.xSearch in Google Scholar

Sypniewski J., Kierończyk B., Benzertiha A., Mikołajczak Z., Pruszyńska-Oszmałek E., Kołodziejski P., Sassek M., Rawski M., Czekała W., Józefiak D.(2020). Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Brit. Poultry Sci., 1: 1–9.10.1080/00071668.2020.1716302Search in Google Scholar

Tomotake H., Katagiri M., Yamato M.(2010). Silkworm pupae (Bombyx mori) are new sources of high quality protein and lipid. J. Nutr. Sci. Vitaminol., 56: 446–448.10.3177/jnsv.56.446Search in Google Scholar

Tschirner M., Kloas W.(2017). Increasing the sustainability of aquaculture systems: Insects as alternative protein source for fish diets. GAIA Ecol. Perspect. Sci. Soc., 26: 332–340.10.14512/gaia.26.4.10Search in Google Scholar

Tschirner M., Simon A.(2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed, 1: 249–259.10.3920/JIFF2014.0008Search in Google Scholar

Turek J., Sampels S., Khalili Tilami S., ČervenýD., KolářováJ., Randak T., Mráz J., Másílko J.(2018). Insects in rainbow trout (Oncorhynchus mykiss) feed: effect on growth, fatty acid composition and sensory attributes. Factors influencing nutritional value of fish. Proc. 13th International Symposium on Fisheries and Aquatic Sciences. Proceedings Book, Ankara, Turkey, 99 pp.Search in Google Scholar

Tzompa-Sosa D.A., Yi L., van Valenberg H.J., van Boekel M.A., Lakemond C.M.(2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Res. Int., 62: 1087–1094.10.1016/j.foodres.2014.05.052Search in Google Scholar

United States Departmentof Agriculture(USDA).Foreign Agricultural Service.USDA:Washington, D., USA.(2018). Oilseeds: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf, (accessed on 13 March 2020).Search in Google Scholar

Ushakova N.A., Brodskii E.S., Kovalenko A.A., Bastrakov A.I., Kozlova A.A., Pavlov A.D.S.(2016). Characteristics of lipid fractions of larvae of the black soldier fly Hermetia illucens. Dokl. Biochem. Biophys., 468: 209–212.10.1134/S1607672916030145Search in Google Scholar

Van Zanten H.H., Bikker P., Mollenhorst H., Meerburg B., De Boer I.(2015). Environmental impact of replacing soybean meal with rapeseed meal in diets of finishing pigs. Animal, 9: 1866–1874.10.1017/S1751731115001469Search in Google Scholar

Vargas A., Randazzo B., Riolo P., Truzzi C., Gioacchini G., Giorgini E., Loreto N., Ruschioni S., Zarantoniello M., Antonucci M., Polverini S.(2018). Rearing zebrafish on black soldier fly (Hermetia illucens): Biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish, 15: 404–419.10.1089/zeb.2017.1559Search in Google Scholar

Vargas-Abúndez A.J., Randazzo B., Foddai M., Sanchini L., Truzzi C., Giorgini E., Gasco L., Olivotto I.(2019). Insect meal based diets for clownfish: Biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture, 498: 1–11.10.1016/j.aquaculture.2018.08.018Search in Google Scholar

Zeitz J.O., Fennhoff J., Kluge H., Stangl G.I., Eder K.(2015). Effects of dietary fats rich in lauric and myristic acid on performance, intestinal morphology, gut microbes, and meat quality in broilers. Poultry Sci., 94: 2404–2413.10.3382/ps/pev191Search in Google Scholar

Zhang W., Wu G., Xu S., Wang Q., Liu Y., Man C.(2020). Expression and function characterization of Gimap5 gene from different breeds of broilers. Chin. J. Biotechnol., 36: 259–266.Search in Google Scholar

Ziegler R.(1997). Lipid synthesis by ovaries and fat body of Aedes aegypti (Diptera: Culicidae). Eur. J. Entomol., 94: 385–91.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine