1. bookVolume 20 (2020): Issue 4 (October 2020)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Identification of mRNA Degradome Variation Dependent on Divergent Muscle Mass in Different Pig Breeds

Published Online: 07 Nov 2020
Volume & Issue: Volume 20 (2020) - Issue 4 (October 2020)
Page range: 1241 - 1256
Received: 21 Jan 2020
Accepted: 25 Jun 2020
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The search is still on for the molecular processes associated with the development and metabolism of skeletal muscles. Selection conducted in farm animals is focused on high muscle mass because it delivers higher economic profit. The present study aimed to shed light on mRNA degradome signals that could be characteristic for molecular processes associated with an abundance of muscle mass and to identify miRNA regulatory networks controlling these processes in pigs applying next-generation-sequencing (NGS). In the study, over 10,000 degraded transcripts were identified per sample, with the highest abundance for genes encoding mitochondrial proteins (COXs, NDs, CYTB, ATP6 and ATP8). Moreover, only 26% of the miRNA targets were found within this degraded transcript pool, which suggested for miRNAs other molecular mechanism at different level of gene expression than mRNA degradation. On the other hand, a small share of the identified degraded transcripts associated with miRNA regulation suggests a different mechanism of mRNA degradation for identified degraded transcropts. Subsequently, most of the miRNA gene degraded targets, such as ENO3, CKM, CRYAB and ADAM19 encode proteins involved in the muscle mass control. The present study showed an interesting dependence between miRNAs and their targets. Nevertheless, the complete view of the miRNA regulatory network could be a subject of further advanced research, which would employ a miRNA transfection procedure in skeletal muscle cell cultures.

Keywords

Addo-Quaye C., Miller W., Axtell M.J.(2009). CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics, 25: 130–131.Search in Google Scholar

Adeva-Andany M.M., González-Lucán M., Donapetry-García C., Fernández-Fernández C., Ameneiros-Rodríguez E.(2016). Glycogen metabolism in humans. BBA Clin., 5: 85–100.Search in Google Scholar

Ambros V.(2004). The functions of animal microRNAs. Nature, 431: 350–355.Search in Google Scholar

Ameres S.L., Zamore P.D.(2013). Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol., 14: 475–488.Search in Google Scholar

Bereta A., Tyra M., Ropka-Molik K., Wojtysiak D., Różycki M., Eckert R.(2014). Histological profile of the longissimus dorsi muscle in Polish Large White and Polish Landrace pigs and its effect on loin parameters and intramuscular fat content. Ann. Anim. Sci., 14: 955–966.Search in Google Scholar

Coutinho L.L., Morris J., Marks H.L., Buhr R.J., Ivarie R.(1993). Delayed somite formation in a quail line exhibiting myofiber hyperplasia is accompanied by delayed expression of myogenic regulatory factors and myosin heavy chain. Development, 117: 563–569.Search in Google Scholar

Diawara M.R., Hue C., Wilder S.P., Venteclef N., Aron-Wisnewsky J., Scott J., Clément K., Gauguier D., Calderari S.(2014). Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS One, 9.10.1371/journal.pone.0091375396799324675842Search in Google Scholar

Duque S.I., Arnold W.D., Odermatt P., Li X., Porensky P.N., Schmelzer L., Meyer K., Kolb S.J., Schümperli D., Kaspar B.K., Burghes A.H.M.(2015). A large animal model of spinal muscular atrophy and correction of phenotype. Ann. Neurol., 77: 399–414.Search in Google Scholar

Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E.(2009). Deadenylation is a widespread effect of miRNA regulation. RNA, 15: 21–32.Search in Google Scholar

Foucault G., Vacher M., Merkulova T., Keller A., Arrio-Dupont M.(1999). Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase. Biochem. J., 338 ( Pt 1): 115–121.Search in Google Scholar

Freimer J.W., Hu T.J., Blelloch R.(2018). Decoupling the impact of MicroRNAs on translational repression versus RNA degradation in embryonic stem cells. Elife, 7: e38014.Search in Google Scholar

Fukuzawa A., Lange S., Holt M., Vihola A., Carmignac V., Ferreiro A., Udd B., Gautel M.(2008). Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band – Implications for hereditary myopathies. J. Cell Sci., 121: 1841–1851.Search in Google Scholar

Gebert L.F.R., Mac Rae I.J.(2019). Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 20: 21–37.Search in Google Scholar

Groth C.G.(2007). The potential advantages of transplanting organs from pig to man: A transplant surgeon’s view. Indian J. Urolog., 23: 305–309.Search in Google Scholar

Gurnett C.A., Alaee F., Desruisseau D., Boehm S., Dobbs M.B.(2009). Skeletal muscle contractile gene (TNNT3, MYH3, TPM2) mutations not found in vertical talus or clubfoot. Clin. Orthop. Relat. Res., 467: 1195–1200.Search in Google Scholar

He X., Yan Y.L., Eberhart J.K., Herpin A., Wagner T.U., Schartl M., Postlethwait J.H.(2011). MiR-196 regulates axial patterning and pectoral appendage initiation. Dev. Biol., 357: 463–477.Search in Google Scholar

Jackowiak P., Nowacka M., Strozycki P.M., Figlerowicz M.(2011). RNA degradomeits biogenesis and functions. Nucleic Acids Res., 39: 7361–7370.Search in Google Scholar

Krüger M., Kötter S.(2016). Titin, a central mediator for hypertrophic signaling, exercise-induced mechanosignaling and skeletal muscle remodeling. Front. Physiol., 7: 76.Search in Google Scholar

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.(2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25: 2078–2079.Search in Google Scholar

Liu J., Fu R., Liu R., Zhao G., Zheng M., Cui H., Li Q., Song J., Wang J., Wen J.(2016). Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLoS One, 11.10.1371/journal.pone.0159722498005627508388Search in Google Scholar

Lytle J.R., Yario T.A., Steitz J.A.(2007). Target mRNAs are repressed as efficiently by microRNA- binding sites in the 5’ UTR as in the 3’ UTR. Proc. Natl. Acad. Sci. USA, 104: 9667–9672.Search in Google Scholar

Mi H., Muruganujan A., Ebert D., Huang X., Thomas P.D.(2019). PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res., 47: D419–D426.Search in Google Scholar

Neppl R.L., Kataok M., Wang D.Z.(2014). Crystallin-αB regulates skeletal muscle homeostasis via modulation of Argonaute2 activity. J. Biol. Chem., 289: 17240–17248.Search in Google Scholar

Neuner R., Cousin H., Mc Cusker C., Coyne M., Alfandari D.(2009). Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech. Dev., 126: 240–255.Search in Google Scholar

Olsen P.H., Ambros V.(1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol., 216: 671–680.Search in Google Scholar

Orzechowska B., Wojtysiak D., MigdałW., Tyra M.(2008). Relationships between muscle fibre characteristics and physico-chemical properties of longissimus lumborum muscle and growth rate in pig fatteners of three breeds. Anim. Sci. Pap. Rep., 26: 277–285.Search in Google Scholar

Palstra A.P., Beltran S., Burgerhout E., Brittijn S.A., Magnoni L.J., Henkel C.V., Jansen H.J., vanden Thillart G.E.E.J.M., Spaink H.P., Planas J.V.(2013). Deep RNA sequencing of the skeletal muscle transcriptome in swimming fish. PLoS One, 8: e53171.Search in Google Scholar

Pratt A.J., Mac Rae I.J.(2009). The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem., 284: 17897–17901.Search in Google Scholar

Qian L., Tang M., Yang J., Wang Q., Cai C., Jiang S., Li H., Jiang K., Gao P., Ma D., Chen Y., An X., Li K., Cui W.(2015). Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep., 5: 14435.Search in Google Scholar

Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Piórkowska K., Żak G., Gurgul A., Derebecka N., Wesoły J.(2018). Examining the genetic background of porcine muscle growth and development based on transcriptome and miRNAome data. Int. J. Mol. Sci., 19: 1208.Search in Google Scholar

Roy B., Jacobson A.(2013). The intimate relationships of mRNA decay and translation. Trends Genet., 29: 691–699.Search in Google Scholar

Sanei M., Chen X.(2015). Mechanisms of microRNA turnover. Curr. Opin. Plant Biol., 27: 199–206.Search in Google Scholar

Savarese M., Sarparanta J., Vihola A., Udd B., Hackman P.(2016). Increasing role of titin mutations in neuromuscular disorders. J. Neuromuscul. Dis., 3: 293–308.Search in Google Scholar

Selsby J.T., Ross J.W., Nonneman D., Hollinger K.(2015). Porcine models of muscular dystrophy. ILAR J., 56: 116–126.Search in Google Scholar

Škrlep M., Kavar T., Čandek-Potokar M.(2010). Comparison of PRKAG3 and RYR1 gene effect on carcass traits and meat quality in Slovenian commercial pigs. Czech J. Anim. Sci., 55: 149–159.Search in Google Scholar

Stocks M.B., Mohorianu I., Beckers M., Paicu C., Moxon S., Thody J., Dalmay T., Moulton V.(2018). The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for analyzing miRNAs and sRNAs. Bioinformatics, 34: 3382–3384.Search in Google Scholar

Sugiyama Y., Suzuki A., Kishikawa M., Akutsu R., Hirose T., Waye M.M.Y., Tsui S.K.W., Yoshida S., Ohno S.(2000). Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem., 275: 1095–1104.Search in Google Scholar

Szklarczyk D., Gabl A.L., Lyo D., Junge A., Wyde S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jense L.J., Mering C.von(2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47: D607–D613.Search in Google Scholar

Tai P.W.L., Fisher-Aylor K.I., Himeda C.L., Smith C.L., Mac Kenzie A.P., Helterline D.L., Angello J.C., Welikson R.E., Wold B.J., Hauschka S.D.(2011). Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer. Skelet. Muscle, 1: 25.Search in Google Scholar

Te Pas M.F.W., Cagnazzo M., De Wit A.A.C., Priem J., Pool M., Davoli R.(2005). Muscle transcriptomes of Duroc and Pietrain pig breeds during prenatal formation of skeletal muscle tissue using microarray technology. Arch. Tierz., Dummerstorf., 48: 141–147.Search in Google Scholar

Trapnell C., Pachter L., Salzberg S.L.(2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 25: 1105–1111.Search in Google Scholar

Tyra M., Żak G.(2013). Analysis of the possibility of improving the indicators of pork quality through selection with particular consideration of intramuscular fat (IMF) content. Ann. Anim. Sci., 13: 33–44.Search in Google Scholar

vander Pijl R., Strom J., Conijn S., Lindqvist J., Labeit S., Granzier H., Ottenheijm C.(2018). Titin-based mechanosensing modulates muscle hypertrophy. J. Cachexia Sarcopenia Muscle, 9: 947–961.Search in Google Scholar

Wang L., Wang S., Li W.(2012). RSeQC: Quality control of RNA-seq experiments. Bioinformatics, 28: 2184–2185.Search in Google Scholar

Wilson R.C., Doudna J.A.(2013). Molecular mechanisms of RNA interference. Annu. Rev. Biophys., 42: 217–239.Search in Google Scholar

Wu M.P., Chang N.C., Chung C.L., Chiu W.C., Hsu C.C., Chen H.M., Sheu J.R., Jayakumar T., Chou D.S., Fong T.H.(2018). Analysis of titin in red and white muscles: crucial role on muscle contractions using a fish model. Biomed Res. Int., https://doi.org/10.1155/2018/581687510.1155/2018/5816875627649430581860Search in Google Scholar

Ye R.S., Li M., Chen T., Wei X.C., Qi Q.E., Cheng X., Li C.Y., Jiang Q.Y., Xi Q.Y., Zhang Y.L.(2018). miRNAome, mRNAome and degradome analysis of Tibetan minipigs anterior pituitary. Gen. Comp. Endocrinol., 259: 104–114.Search in Google Scholar

Zeng P., Han W., Li C., Li H., Zhu D., Zhang Y., Liu X.(2016). MiR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice. Acta Biochim. Biophys. Sin. (Shanghai), 48: 833–839.Search in Google Scholar

Zhai J., Arikit S., Simon S.A., Kingham B.F., Meyers B.C.(2014). Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. Methods, 67: 84–90.Search in Google Scholar

Zhi G., Ryder J.W., Huang J., Ding P., Chen Y., Zhao Y., Kamm K.E., Stull J.T.(2005). Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc. Natl. Acad. Sci. USA, 102: 17519–17524.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo