1. bookVolume 18 (2018): Issue 4 (October 2018)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Silver and Zinc Nanoparticles in Animal Nutrition – A Review

Published Online: 02 Nov 2018
Volume & Issue: Volume 18 (2018) - Issue 4 (October 2018)
Page range: 879 - 898
Received: 05 Feb 2018
Accepted: 20 May 2018
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The use of metal nanoparticles as supplements of animal diets does not always bring unambiguous results. There are many reports in the literature about the multifaceted effects of this type of supplementation on the animal organism. Therefore, the aim of the paper is to present the current knowledge of the possible application of nanometal forms in animal nutrition and its potential benefits and threats. The positive effect of nanoparticles used as feed additives has most frequently been reflected in an increase in body weight, higher average daily gain, or improvement of the FCR value. In some cases, however, the effect of nanoparticle addition to diets was indiscernible. The potent antibacterial activity of nanoparticles, especially against Gram-negative bacteria and Gram-positive bacteria, is regarded as a positive effect. In turn, the probability of their toxicity is a potential risk in application thereof. Supplementation of diets with nanometals has been accompanied by pathological changes in animal tissues, primarily in the pancreas, kidney, liver, rumen, abomasum, small intestine, adrenal glands, and brain. Additionally, at the the cellular level, nanoparticles were found to induce toxicity, inflammatory excitation, and cell death. Oral administration of nanoparticles induced a risk of malfunction of the nervous system and even impairment of cognitive processes in animals. The increasing knowledge of the possible toxic effects of nanoparticles on the animal organism suggests caution in their use in animal production and necessitates further precise investigations in this area.

Keywords

Adams L.K., Lyon D.Y., Alvarez P.J.J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res., 40: 3527–3532.Search in Google Scholar

Ahmadi J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Ap. Sci. J., 7: 24–27.Search in Google Scholar

Ahmadi F., Branch S. (2012). Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J., 32: 325–328.Search in Google Scholar

Ahmadi F., Khah M.M., Javid S., Zarneshan A., Akradi L., Salehifar P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. Inter. J. Biosci, 3: 95–100.Search in Google Scholar

Al-Yasiry A.R.M., Kiczorowska B., Samolińska W. (2017). The nutritional value and content of mineral elements in meat of broiler chicken feed diets supplemented with Boswellia serrata. J. Elem., 22: 1027–1037.Search in Google Scholar

Antonelli M., De Pascale G., Ranieri V.M., Pelaia P., Tufano R., Piazza O., Zangrillo A., Ferrario A., De Gaetano A., Guaglianone E., Donelli G. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTiveR) vs conventional catheters in intensive care unit patients. J. Hosp. Infect., 82: 101–107.Search in Google Scholar

Arabi F., Imandar M., Negahdary M., Imandar M., Noughabi M. T., Akbari-dastjerdi H., Fazilati M. (2012). Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res., 7: 3679–3685.Search in Google Scholar

Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. (2007). Effect of silver on burn wound infection control and healing: review of the literature. Burns, 33: 139–148.Search in Google Scholar

Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. (2009). To wards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4: 634–641.Search in Google Scholar

Boudreau M.D., Imam M.S., Paredes A.M., Bryant M.S., Cunningham C.K., Felton R.P., Jones M.Y., Davis K.J., Olson G.R. (2016). Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol. Sci., 150: 131–160.Search in Google Scholar

Buzea C., Pacheco I.I., Robbie K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2: MR17–MR71.Search in Google Scholar

Chen H., Zhao R., Wang B., Cai C., Zheng L., Wang H., Wang M., Ouyang H., Zou X., Chai Z., Zhao Y., Feng W. (2017). The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 8: 80–88.Search in Google Scholar

Chen Y., Chen H., Shi J. (2013). In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 23: 3144–3176.Search in Google Scholar

Chmielowiec-Korzeniowska A., Tymczyna L., Dobrowolska M., Banach M., Nowakowicz-Dębek B., Bryl M., Drabik A., Tymczyna-Sobotka M., Kolejko M. (2015). Silver (Ag) in tissues and eggshells, biochemical parameters and oxidative stress in chickens. Open Chem., 13: 1269–1274.Search in Google Scholar

Choi O., Hu Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Envir. Sci. Tech., 42: 4583–4588.Search in Google Scholar

Choi O., Deng K.K., Kim N.J., Ross L.Jr., Surampalli R.Y., Hu Z. (2008). The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Res., 42: 3066–3074.Search in Google Scholar

Chook S.W., Chia C.H., Zakaria S., Ayob M.K., Chee K.L., Huang N.M., Neoh H.M., Lim H.N., Jamal R., Fadhil R.M., Rahman R.A. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res. Lett., 7: 541.Search in Google Scholar

Cui L., Chen P., Chen S., Yuan Z., Yu C., Ren B., Zhang K. (2013). In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal. Chem., 85: 5436–5443.Search in Google Scholar

Curtis A., Wilkinson C. (2001). Nanotechniques and approaches in biotechnology. Mater. Today, 4: 22–28.Search in Google Scholar

Dhas S.P., Shiny P.J., Khan S., Mukherjee A., Chandrasekaran N. (2014). Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol., 54: 916–927.Search in Google Scholar

Diarra M.S., Silversides F.G., Diarrassouba F. (2007). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microbiol., 73: 6566–6576.Search in Google Scholar

Dos Santos C.A., Seckler M.M., Ingle A.P., Gupta I., Galdiero S., Galdiero M., Gade A., Rai M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 103: 1931–1944.Search in Google Scholar

Elkloub K., Moustafa M.E., Ghazalah A.A., Rehan A.A.A. (2015). Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci., 14: 177–182.Search in Google Scholar

EU Recommendation (2011). Recommendation on the definition of a nanomaterial, 696. EU.Search in Google Scholar

Felehgari K., Ahmadi F., Rokhzadi A., Kurdestany A.H., Khah M.M. (2013). The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bull. Env. Pharmacol. Life Sci., 2: 104–108.Search in Google Scholar

Ferket P. (2011). Strategies for finding alternatives to growth promoters. Available from: http://en.engormix.com/MA-poultry-industry/management/articles/strategies-finding-alternatives-growth-t1771/124-p0.htm. Accessed August 1, 2012.Search in Google Scholar

Fondevila M. (2010). Potential use of silver nanoparticles as an additive in animal feeding, silver nanoparticles, Perez D.P. (ed.), InTech, DOI: 10.5772/8509. Available from: http://www.intecho-pen.com/books/silver-nanoparticles/potential-use-of-silver-nanoparticles-as-an-additive-in-animal-feeding10.5772/8509.Availablefrom:http://www.intecho-pen.com/books/silver-nanoparticles/---silver-nanoparticles-----animal-feedingOpen DOISearch in Google Scholar

Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Tech., 150: 259–269.Search in Google Scholar

Gallocchio F., Biancotto G., Cibin V., Losasso C., Belluco S., Peters R., van Bemmel G., Cascio C., Weigel S., Tromp P., Gobbo F., Catania S., Ricci A. (2017). Transfer study of silver nanoparticles in poultry production. J. Agric. Food Chem., 65: 3767–3774.Search in Google Scholar

Grela E.R., Kiczorowska B., Samolińska W., Kiczorowski P., Rybiński W., Hanczakowska E. (2017). Chemical composition of chosen leguminous. Part I. Basic nutrients, amino acids, antinutritional factors and antioxidant activity. European Food Res. Tech., 243: 1385–1395.Search in Google Scholar

Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., Filser J., Hensten A., Kneuer K., Maillard J-V., Norppa H., Scheringer M., Wijnh oven S. (2015). Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 18: 122–123.Search in Google Scholar

Hassanabadi A., Hajati H., Bahreini L. (2012). The effects of nano-silver on performance, carcass characteristics, immune system and intestinal microflora of broiler chickens. Proc. 3rd International Veterinary Poultry Congress.Search in Google Scholar

Hendrickson O.D., Klochkov S.G., Novikova O.V., Bravova I.M., Shevtsova E.F., Safenkova I.V., Zherdev A.V., Bachurin S.O., Dzantiev B.B. (2016). Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects. Toxicol. Lett., 241: 184–192.Search in Google Scholar

Houtkooper R.H., Argmann C., Houten S.M., Cantó C., Jeninga E.H., Andreux P.A., Thomas C., Doenlen R., Schoonjans K., Auwerx J. (2011). The metabolic footprint of aging in mice. Sci. Rep., 1: 134.Search in Google Scholar

Hwang M.G., Katayama H., Ohgaki S. (2007). Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res., 41: 4097–4104.Search in Google Scholar

Kędziora A., Gerasymchuk Y., Sroka E., Bugała-Płoskońska G., Doroszkiewicz W., Rybak Z., Hreniak D., Wiglusz R., Stręk W. (2013). Use of the materials based on partially reduced graphene-oxide with silver nanoparticle as bacteriostatic and bactericidal agen (in Polish). Polim. Med., 43: 129–134.Search in Google Scholar

Kiczorowska B., Samolińska W., Grela E.R, Andrejk o D. (2015 a). Effect of infrared-irradiated pea seeds in mixtures for broilers on the health status and selected performance indicators of the birds (in Polish). Med. Wet., 71: 583–588.Search in Google Scholar

Kiczorowska B., Samolińska W., Kwiecień M., Winiarska-Mieczan A., Rusinek-Prystupa E., Al-Yasiry A.R.M. (2015 b). Nutritive value and contents of minerals in eggs produced in large-scale, courtyard and organic systems. J. Elem., 20: 887–898.10.5601/jelem.2014.19.4.701Search in Google Scholar

Kiczorowska B., Samolińska W., Andrejk o D. (2016 a). Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat. Anim. Sci. J., 87: 1396–1406.10.1111/asj.12592Search in Google Scholar

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M. Kowalczyk-Pecka D. (2016 b). Effect of supplementation of mixtures for broiler chickens with Boswellia serrata on the condition of the gastrointestinal tract and rearing efficiency. Ann. Anim. Sci., 16: 835–849.10.1515/aoas-2016-0007Search in Google Scholar

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M, Kiczorowski P., Winiarska-Mieczan A. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci., 17: 1–21.Search in Google Scholar

Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., Kwon I.H., Jeong J., Han B.S., Yu I.J. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicol., 20: 575–583.Search in Google Scholar

Kumar S. (2010). Nanotechnology and animal health. Vet. World, 3: 567–569.Search in Google Scholar

Lara H.H., Ayala-Nunez N.V., Turrent L.C.I., Padilla C.R. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biot., 26: 615–621.Search in Google Scholar

Li M.Z., Huang J.T., Tsai Y.H., Mao S.Y., Fu C.M., Lien T.F. (2016). Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J., 87: 1379–1385.Search in Google Scholar

Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24: 135–141.Search in Google Scholar

Lin W., Xu Y., Huang C., Ma Y., Shannon K.B., Chen D., Huang Y.W. (2009). Toxicity of nano-and microsized ZnO particles in human lung epithelial cells. J. Nanopart. Res., 11: 25–39.Search in Google Scholar

Lipińska I. (2015). Innovation risks in production of food – legal and economic aspects (in Polish). Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu. Rocz. Nauk., 17: 129–134.Search in Google Scholar

Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. App. Microbiol., 107: 1193–1201.Search in Google Scholar

Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Kwong-Hang Tam P., Chiu J.F., Che C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12: 527–534.Search in Google Scholar

Martinez-Castanon G.A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J.R., Ruiz F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res., 10: 1343–1348.Search in Google Scholar

Milani N.C., Sbardella M., Ikeda N.Y., Arno A., Mascarenhas B.C., Miyada V.S. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Tech., 227: 13–23.Search in Google Scholar

Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Brit. Poultry Sci., 56: 486–493.Search in Google Scholar

Najafzadeh H., Ghoreishi S.M., Mohammadian B., Rahimi E., Afzalzadeh M.R., Kazemivarnamkhasti M., Ganjealidaran H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Vet. World, 6: 534–537.Search in Google Scholar

Nirmala R., Sheikh F.A., Kanjwal M.A., Lee J.H., Park S.-J., Navamathavan R., Kim H.Y. (2010). Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J. Nanoparticle Res., 13: 1917–1927.Search in Google Scholar

Nistico R., Rosellini A., Rivolo P., Faga M.G., Lamberti R., Martorana S., Castellino M., Virga A., Mandracci P., Malandrino M., Magnacca G. (2015). Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles. Appl. Surf. Sci., 328: 287–295.Search in Google Scholar

Ognik K., Sembratowicz I., Cholewińska E., Wlazło Ł., Nowakowicz-Dębek B., Szlązak R., Tutaj K. (2016). The effect of chemically-synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Ann. Anim. Sci., 16: 439–450.Search in Google Scholar

Padmavathy N., Vijayaraghavan R. (2008). Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater., 9: 1–7.Search in Google Scholar

Park E.-J., Bae E., Yi J., Kim Y., Choi K., Lee S.H., Yoon J., Lee B.C., Park K. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Sci. Technol., 30: 162–168.Search in Google Scholar

Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sa-wosz F., Chwalibog A. (2012). Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol., 4: 1–8.Search in Google Scholar

Rai M., Yadav A., Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27: 76–83.Search in Google Scholar

Rajendran D., Kumar G., Ramakrishnan S., Thomas K.S. (2013). Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Res. J. Biotechnol., 8: 11–17.Search in Google Scholar

Rajendran R., Balakumar C., Hasabo A.M.A., Jayakumar S., Vaideki K., Ra-jesh E.M. (2010). Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol., 2: 202–208.Search in Google Scholar

Sabella S., Carney R.P., Brunetti V., Malvindi M.A., Al-Juffali N., Vecchio G., Janes S.M., Bakr O.M., Cingolani R., Stellacci F., Pompa P.P. (2014). A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 6: 7052–7061.Search in Google Scholar

Sawosz E., Binek M., Grodzik M., Zielińska M., Sysa P., Szmidt M., Niemiec T., Chwalibog A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Tierernahr., 6: 444–451.Search in Google Scholar

Sawosz E., Grodzik M., Zielinska M., Niemiec T., Olszanska B., Chwalibog A. (2009). Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Eur. Poult. Sci., 73: 208–213.Search in Google Scholar

Sawosz E., Grodzik M., Lisowski P., Zwierzchowski L., Niemiec T., Zieliń-ska M., Szmidt M., Chwalibog A. (2010). Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bull. Vet. Inst. Pulawy, 54: 81–85.Search in Google Scholar

Seil J.T., Webster T.J. (2012). Antibacterial effect of zinc oxide nanoparticles combined with ultra-sound. Nanotech., 23: 495101.Search in Google Scholar

Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech, 18: 225103.Search in Google Scholar

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7: 219–242.Search in Google Scholar

Skalska J., Frontczak-Baniewicz M., Strużyńska L. (2015). Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology, 46: 145–154.Search in Google Scholar

Smekalova M., Aragon V., Panacek A., Prucek R., Zboril R., Kvitek L. (2016). Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J., 209: 174–179.Search in Google Scholar

Smith J., Sones K., Grace D., Mac Millan S., Tarawali S., Herrero M. (2013). Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front., 3: 6–13.Search in Google Scholar

Soltani M., Ghodratnema M., Ahari A., Ebrahimzadeh Mousavi H.A., Atee M., Dastmalchi F., Rahmanya J., (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. Int. J. Vet. Res., 3: 137–142.Search in Google Scholar

Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K.L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B.A., Kosaraju K., Tarannum M., Craw-ford S., Yi P., Liu X., Babu S.V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J. (2015). Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environ. Sci. Nano., 2: 227–244.Search in Google Scholar

Świderska-Środa A., Łojkowski W., Lewandowska M., Kurzydłowski K. (2016). The nanoparticles world (in Polish). Wyd. Nauk. PWN, Warszawa.Search in Google Scholar

Taglietti A., Diaz Fernandez Y.A., Amato E., Cucca L., Dacarro G., Grisoli P., Necchi V., Pallavicini P., Pasotti L., Patrini M. (2012). Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir, 28: 8140–8148.Search in Google Scholar

Uniyal S., Garg A.K., Jadhav S.E., Chaturvedi V.K., Mohanta R.K. (2017). Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest. Sci., 204: 59–64.Search in Google Scholar

Varner K.E., El-Badawy A., Feldhake D., Venkatapathy R. (2010). State-Of-The-Science Review: Everything Nano Silver and More. Washington, DC, US Environmental Protection Agency.Search in Google Scholar

Wadhera A., Fung M. (2005). Systemic argyria associated with ingestion of colloidal silver. Dermatology Online Journal 11, 12, http://dermatology.cdlib.org/11110.5070/D30832G6D3Search in Google Scholar

Wang B., Feng W., Wang M., Wang T., Gu Y., Zhu M., Ouyang H., Shi J., Zhang F., Zhao Y., Chai Z., Wang H., Wang J. (2008). Acute toxicological impact of nano- and submiro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10: 263–276.Search in Google Scholar

Wawrzynowicz J., Wajszczuk K., Baum R. (2012). The specificity of risk factors in agricultural enterprises – an attempt at a holistic approach (in Polish). Zarządzanie i Finanse, 10: 349–360.Search in Google Scholar

Wijnhoven S.W.P., Peijnenburg W.J.G.M., Peijnenburg W.J., Herberts C.A., Ha-gens W.I., Oomen A.G., Heugens E.H., Roszek B., Bisschops J., Gosens I., Van De Meent D., Dekkers S., De Jong W.H., van Zijverden M., Sips A.J.A.M., Geertsma R. (2009). Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109–138.Search in Google Scholar

Wilding L.A., Bassis C.M., Walacavage K., Hashway S., Leroueil P.R., Morishita M., Maynard A.D., Philbert M.A., Bergin I.L. (2016). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 10: 513–520.Search in Google Scholar

Williams K., Milner J., Boudreau M.D., Gokulan K., Cerniglia C.E., Khare S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9: 279–289.Search in Google Scholar

Wong S.W., Leung P.T., Djurisic A.B., Leung K.M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem., 396: 609–618.Search in Google Scholar

Wu J., Zheng Y., Wen X., Lin Q., Chen X., Wu Z. (2014). Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: Investigation in vitro and in vivo. Biomed. Mater., 9: 035–045.Search in Google Scholar

Wzorek Z., Konopka M. (2007). Nanosilver – a new bactericidal agent (in Polish). Czas. Techn. Chemia, 104: 175–181.Search in Google Scholar

Xia T., Kovochich M., Liong M., Madler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2: 2121–2134.Search in Google Scholar

Xiong D., Fang T., Yu L., Sima X., Zhu W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ., 409: 1444–1452.Search in Google Scholar

Yang W., Shen C., Ji Q., An H., Wang J., Liu Q., Zhang Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 2: 2121–2134.Search in Google Scholar

Yousef J.M., Danial E.N. (2012). In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci., 2: 38–42.Search in Google Scholar

Zhang L., Jiang Y., Ding Y., Povey M., York D., (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 9: 479–489.Search in Google Scholar

Zhao Y.C., Shu T.X., Xiao Y.X., Qiu S.X., Pan Q.J., Tang X.Z. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broiler. Biol. Trace Elem. Res., 160: 361–367.Search in Google Scholar

Zhisheng C.J. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese J. Anim. Nutr., 8: 23–29.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo