1. bookVolume 18 (2018): Issue 3 (July 2018)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review

Published Online: 01 Aug 2018
Volume & Issue: Volume 18 (2018) - Issue 3 (July 2018)
Page range: 623 - 638
Received: 18 Dec 2017
Accepted: 12 Mar 2018
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.

Keywords

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). Epigenetic alteration of donor cells with histone deacetylase inhibitor m-carboxycinnamic acid bishydroxymide improves the in vitro developmental competence of buffalo (Bubalus bubalis) cloned embryos. Cell. Reprogram., 20: 76-88.Search in Google Scholar

Allegrucci C., Thurston A., Lucas E., Young L. (2005). Epigenetics and the germline. Reproduction, 129: 137-149.Search in Google Scholar

Anckaert E., Fair T. (2015). DNAmethylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod. Fertil. Dev., 27: 739-754.Search in Google Scholar

Armstrong L.M., Lako W., Dean W., Stojkovic M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24: 805-814.Search in Google Scholar

Bonk A.J., Cheong H.T., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2007). Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine. Epigenetics, 2: 179-186.Search in Google Scholar

Bonk A.J., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2008). Aberrant DNAmethylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Mol. Reprod. Dev., 75: 250-264.Search in Google Scholar

Bortvin A., Eggan K ., Skaletsky H ., Akutsu H ., Berry D .L., Yanagimachi R ., Page D.C., Jaenisch R. (2003). Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 130: 1673-1680.Search in Google Scholar

Bowles E.J., Campbell K.H., St John J.C. (2007). Nuclear transfer: preservation ofanuclear genome at the expense of its associated mt DNAgenome(s). Curr. Top. Dev. Biol., 77: 251-290.Search in Google Scholar

Burgstaller J.P., Schinogl P., Dinnyes A., Müller M., Steinborn R. (2007). Mitochondrial DNAheteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol., 7: 141.Search in Google Scholar

Campbell K.H., Alberio R. (2003). Reprogramming the genome: role of the cell cycle. Reprod. Suppl., 61: 477-494.Search in Google Scholar

Cezar G.G., Bartolomei M.S., Forsberg E.J., First N.L., Bishop M.D., Eilert -sen K.J. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod., 68: 1009-1014.Search in Google Scholar

Chavatte-Palmer P., Heyman Y., Richard C., Monget P., Le Bourhis D., Kann G., Chilliard Y., Vignon X., Renard J.P. (2002). Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod., 66: 1596-1603.Search in Google Scholar

Corry G.N., Tanasijevic B., Barry E.R., Krueger W., Rasmussen T.P. (2009). Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C, 87: 297-313.Search in Google Scholar

Cui W., Wylie D., Aslam S., Dinnyes A., King T., Wilmut I., Clark A.J. (2003). Telomerase- immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol. Reprod., 69: 15-21.Search in Google Scholar

Dean W., Santos F., Reik W. (2003). Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol., 14: 93-100.Search in Google Scholar

Deshmukh R.S., Østrup O., Østrup E., Vejlsted M., Niemann H., Lucas- Hahn A., Petersen B., Li J., Callesen H., Hyttel P., (2011). DNAmethylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics, 6: 177-187.Search in Google Scholar

De Sousa P.A., King T., Harkness L., Young L.E., Walker S.K., Wilmut I. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod., 65: 23-30.Search in Google Scholar

Dindot S.V., Farin P.W., Farin C.E., Romano J., Walker S., Long C., Piedrahita J.A. (2004). Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod., 71: 470-478.Search in Google Scholar

Eggan K., Akutsu H., Hochedlinger K., Rideout III W., Yanagimachi R., Jaen -isch R. (2000). X-chromosome inactivation in cloned mouse embryos. Science, 290: 1578-1581.Search in Google Scholar

Eilertsen K.J., Power R.A., Harkins L.L., Misica P. (2007). Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci., 98: 129-146.Search in Google Scholar

Enright B.P., Kubota C., Yang X., Tian X.C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin Aor 5-aza-2’-deoxycytidine. Biol. Reprod., 69: 896-901.Search in Google Scholar

Esteves T.C., Balbach S.T., Pfeiffer M.J., Araúzo-Bravo M.J., Klein D.C., Sinn M., Boiani M. (2011). Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell, 10: 80-95.Search in Google Scholar

Fernandez-Gonzales R., Moreira P., Bilbao A., Jimenez A., Perez- Crespo M., Ramirez M.A., De Fonseca F.R., Pintado B., Gutierrez- Adan A. (2004). Longterm effect of in vitro culture of mouse embryos with serum on m RNAexpression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA, 101: 5880-5885.Search in Google Scholar

Fournier C., Goto Y., Ballestar E., Delaval K., Hever A.M., Esteller M., Feil R. (2002). Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J., 21: 6560-6570.Search in Google Scholar

Han Y.M., Kang Y.K., Koo D.B., Lee K.K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology, 59: 33-44.Search in Google Scholar

Hiendleder S. (2007). Mitochondrial DNAinheritance after SCNT. Adv. Exp. Med. Biol., 591: 103-116.Search in Google Scholar

Hiendleder S., Prelle K., Brüggerhoff K., Reichenbach H.D., Wenigerkind H., Bebbere D., Stojkovic M., Müller S., Brem G., Zakhartchenko V., Wolf E. (2004). Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses. Biol. Reprod., 70: 1196-1205.Search in Google Scholar

Hill J.R., Schlafer D.H., Fisher P.J., Davies C.J. (2002). Abnormal expression of trophoblast major histocompatibility complex class Iantigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol. Reprod., 67: 55-63.Search in Google Scholar

Hossain M.M., Tesfaye D., Salilew- Wondim D., Held E., Pröll M.J., Rings F., Kir-fel G., Looft C., Tholen E., Uddin J., Schellander K., Hoelker M. (2014). Massive deregulation of mi RNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics, 15: 43.Search in Google Scholar

Hörmanseder E., Simeone A., Allen G.E., Bradshaw C.R., Figlmüller M., Gur-don J., Jullien J. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell, 21: 135-143.e6.Search in Google Scholar

Huang J., Zhang H., Yao J., Qin G., Wang F., Wang X., Luo A., Zheng Q., Cao C., Zhao J. (2016). BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction, 151: 39-49.Search in Google Scholar

Inoue K., Kohda T., Lee J., Ogonuki N., Mochida K., Noguchi Y., Tanemura K., Kaneko-Ishino T., Ishino F., Ogura A. (2002). Faithful expression of imprinted genes in cloned mice. Science, 295: 297.Search in Google Scholar

Iurlaro M.,von Meyenn F., Reik W. (2017). DNAmethylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev., 43: 101-109.Search in Google Scholar

Jafarpour F., Hosseini S.M., Ostadhosseini S., Abbasi H., Dalman A., Nasr-Es -fahani M.H. (2017). Comparative dynamics of 5-methylcytosine reprogramming and TETfamily expression during preimplantation mammalian development in mouse and sheep. Theriogenology, 89: 86-96.Search in Google Scholar

Jeon B.G., Coppola G., Perrault S.D., Rho G.J., Betts D.H., King W.A. (2008). S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer. Reproduction, 135: 815-828.Search in Google Scholar

Jouneau A., Renard J.P. (2003). Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev., 13: 486-491.Search in Google Scholar

Jullien J., Vodnala M., Pasque V., Oikawa M., Miyamoto K., Allen G., David S.A., Brochard V., Wang S., Bradshaw C., Koseki H., Sartorelli V., Beaujean N., Gurdon J. (2017). Gene resistance to transcriptional reprogramming following nuclear transfer is directly mediated by multiple chromatin-repressive pathways. Mol. Cell, 65: 873-884.e8.Search in Google Scholar

Kang Y.K., Park J.S., Koo D.B., Choi Y.H., Kim S.U., Lee K.K., Han Y.M. (2002). Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J., 21: 1092-1100.Search in Google Scholar

Kang Y.K., Yeo S., Kim S.H., Koo D.B., Park J.S., Wee G., Han J.S., Oh K.B., Lee K.K., Han Y.M. (2003). Precise recapitulation of methylation change in early cloned embryos. Mol. Reprod. Dev., 66: 32-37.Search in Google Scholar

Kim J.M., Ogura A., Nagata M., Aoki F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod., 67: 760-766.Search in Google Scholar

Kim S.H., Kang Y.K., Koo D.B., Kang M.J., Moon S.J., Lee K.K., Han Y.M. (2004). Differential DNAmethylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem. Biophys. Res. Commun., 324: 58-63.Search in Google Scholar

Koike T., Wakai T., Jincho Y., Sakashita A., Kobayashi H., Mizutani E., Wakaya -ma S., Miura F., Ito T., Kono T. (2016). DNAmethylation errors in cloned mouse sperm by germ line barrier evasion. Biol. Reprod., 94: 1-7.Search in Google Scholar

Koo D.B., Kang Y.K., Choi Y.H., Park J.S., Kim H.N., Oh K.B., Son D.S., Park H., Lee K.K., Han Y.M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod., 67: 487-492.Search in Google Scholar

Kourmouli N., Jeppesen P., Mahadevhaiah S., Burgoyne P., Wu R., Gilbert D.M., Bongiorni S., Prantera G., Fanti L., Pimpinelli S., Shi W., Fundele R., Singh P.B. (2004). Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci., 117: 2491-2501.Search in Google Scholar

Kungulovski G., Jeltsch A. (2016). Epigenome editing: state of the art, concepts, and perspectives. Trends Genet., 32: 101-113.Search in Google Scholar

Lee J., Inoue K., Ono R., Ogonuki N., Kohda T., Kaneko-Ishino T., Ogura A., Ishino F. (2003). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129: 1807-1817.Search in Google Scholar

Liao H.F., Mo C.F., Wu S.C., Cheng D.H., Yu C.Y., Chang K.W., Kao T.H., Lu C.W., Pin-skaya M., Morillon A., Lin S.S., Cheng W.T., Bourc'his D., Bestor T., Sung L.Y., Lin S.P. (2015). Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction, 150: 245-256.Search in Google Scholar

Liu H., Kim J.M., Aoki F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early preimplantation embryos. Development, 131: 2269-2280.Search in Google Scholar

Liu X., Wang Y., Gao Y., Su J., Zhang J., Xing X., Zhou C., Yao K., An Q., Zhang Y. (2018). H3K9 demethylase KDM4Eis an epigenetic regulator for bovine embryonic development andadefective factor for nuclear reprogramming. Development, 145: dev158261.Search in Google Scholar

Lorincz M.C., Schubeler D., Hutchinson S.R., Dickerson D.R., Groudine M. (2002). DNAmethylation density influences the stability of an epigenetic imprint and Dnmt3a/bindependent de novo methylation. Mol. Cell. Biol., 22: 7572-7580.Search in Google Scholar

Lorthongpanich C., Solter D., Lim C.Y. (2010). Nuclear reprogramming in zygotes. Int. J. Dev. Biol., 54: 1631-1640.Search in Google Scholar

Lucifero D., Mertineit C., Clarke H.J., Bestor T.H., Trasler J.M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79: 530-538.Search in Google Scholar

Lucifero D., Chaillet J.R., Trasler J.M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod., 10: 3-18.Search in Google Scholar

Ma P.J., Zhang H., Li R., Wang Y.S., Zhang Y., Hua S. (2015). P53-mediated repression of the reprogramming in cloned bovine embryos through direct interaction with HDAC1 and indirect interaction with DNMT3A. Reprod. Domest. Anim., 50: 400-409.Search in Google Scholar

Mann M.R.W., Bartolomei M.S. (2002). Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol., 3: reviews1003.1-reviews1003.4.Search in Google Scholar

Mann M.R.W., Chung Y.G., Nolen L.D., Verona R.I., Latham K.E., Bartolomei M.S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69: 902-914.Search in Google Scholar

Mann M.R.W., Lee S.S., Doherty A.S., Verona R.I., Nolen L.D., Schultz R.M., Bar-tolomei M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 131: 3727-3735.Search in Google Scholar

Masala L., Burrai G.P., Bellu E., Ariu F., Bogliolo L., Ledda S., Bebbere D. (2017). Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction, 153: 605-619.Search in Google Scholar

Miki H., Inoue K., Kohda T., Honda A., Ogonuki N., Yuzuriha M., Mise N., Ma -tsui Y., Baba T., Abe K., Ishino F., Ogura A. (2005). Birth of mice produced by germ cell nuclear transfer. Genesis, 41: 81-86.Search in Google Scholar

Moreira P.N., Robl J.M., Collas P. (2003). Architectural defects in pronuclei of mouse nuclear transplant embryos. J. Cell Sci., 116: 3713-3720.Search in Google Scholar

Narbonne P., Miyamoto K., Gurdon J.B. (2012). Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr. Opin. Genet. Dev., 22: 450-458.Search in Google Scholar

Novak S., Paradis F., Savard C., Tremblay K., Sirard M.A. (2004). Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation. Biol. Reprod., 71: 1279-1289.Search in Google Scholar

Obata Y., Kono T. (2002). Maternal primary imprinting is established ataspecific time for each gene throughout oocyte growth. J. Biol. Chem., 277: 5285-5289.Search in Google Scholar

Ogawa H., Ono Y., Shimozawa N., Sotomaru Y., Katsuzawa Y., Hiura H., Ito M., Kono T. (2003). Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction, 126: 549-557.Search in Google Scholar

Paoloni-Giacobino A., Chaillet J.R. (2004). Genomic imprinting and assisted reproduction. Reprod. Health, 1: 6.Search in Google Scholar

Park K.Y., Sellars E.A., Grinberg A., Huang S.P., Pfeifer K. (2004). The H19 differentially methylated region marks the parental origin ofaheterologous locus without gametic DNA methylation. Mol. Cell. Biol., 24: 3588-3595.Search in Google Scholar

Park M.R., Cho S.K., Lee S.Y., Choi Y.J., Park J.Y., Kwon D.N., Son W.J., Paik S.S., Kim T., Han Y.M., Kim J.H. (2005). Arare and often unrecognized cerebromeningitis and hemodynamic disorder: Amajor cause of sudden death in somatic cell cloned piglets. Proteomics, 5: 1928-1939.Search in Google Scholar

Pfister-Genskow M., Myers C., Childs L.A., Lacson J.C., Patterson T., Betthau-ser J.M., Goueleke P.J., Koppang R.W., Lange G., Fisher P., Watt S.R., Fors -berg E.J., Zheng Y., Leno G.H., Schultz R.M., Liu B., Chetia C., Yang X., Hoe-schele I., Eilertsen K.J. (2005). Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod., 72: 546-555.Search in Google Scholar

Prather R.S., Ross J.W., Isom S.C., Green J.A. (2009). Transcriptional, posttranscriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc. Reprod. Fertil. Suppl., 66: 165-176.Search in Google Scholar

Prokopuk L., Stringer J.M., Hogg K., Elgass K.D., Western P.S. (2017). PRC2 is required for extensive reorganization of H3K27me3 during epigenetic reprogramming in mouse fetal germ cells. Epigenetics Chromatin, 10: 7.Search in Google Scholar

Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447: 425-432.Search in Google Scholar

Reik W., Santos F., Dean W. (2003 a). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59: 21-32.10.1016/S0093-691X(02)01269-4Search in Google Scholar

Reik W., Santos F., Mitsuya K., Morgan H., Dean W. (2003 b). Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos. Trans. R. Soc. Lond., B, Biol. Sci., 358: 1403-1409.10.1098/rstb.2003.1326169323814511488Search in Google Scholar

Renard J.P., Zhou Q., Le Bourhis D., Chavatte-Palmer P., Hue I., Heyman Y., Vignon X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology, 57: 203-222.Search in Google Scholar

Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78: 1869-1886.Search in Google Scholar

Ruddock N.T., Wilson K.J., Cooney M.A., Korfiatis N.A., Tecirlioglu R.T., French A.J. (2004). Analysis of imprinted messenger RNAexpression during bovine preimplantation development. Biol. Reprod., 70: 1131-1135.Search in Google Scholar

Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393-422.Search in Google Scholar

Samiec M., Skrzyszowska M. (2005). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique:areview. Czech J. Anim. Sci., 50: 185-195.Search in Google Scholar

Santos F., Zakhartchenko V., Stojkovic M., Peters A., Jenuwein T., Wolf E., Reik W., Dean W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol., 13: 1116-1121.Search in Google Scholar

Santos F., Dean W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction, 127: 643-651.Search in Google Scholar

Sarmento O.F., Digilio L.C., Wang Y., Perlin J., Herr J.C., Allis C.D., Coonrod S.A. (2004). Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci., 117: 4449-4459.Search in Google Scholar

Seki Y., Hayashi K., Itoh K., Mizugaki M., Saitou M., Matsui Y. (2005). Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol., 278: 440-458.Search in Google Scholar

Selokar N.L., Saini M., Agrawal H., Palta P., Chauhan M.S., Manik R., Singla S.K. (2015). Downregulation of DNAmethyltransferase 1 in zona-free cloned buffalo (Bubalus bubalis) embryos by small interefering RNAimproves in vitro development but does not alter DNAmethylation level. Cell. Reprogram., 17: 89-94.Search in Google Scholar

Sepulveda- Rincon L.P., Solanas Edel L., Serrano- Revuelta E., Ruddick L., Maalouf W.E., Beaujean N. (2016). Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology, 86: 91-98.Search in Google Scholar

Shi L., Wu J. (2009). Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol., 7: 59.Search in Google Scholar

Shi W., Zakhartchenko V., Wolf E. (2003 a). Epigenetic reprogramming in mammalian nuclear transfer. Differentiation, 71: 91-113.10.1046/j.1432-0436.2003.710201.x12641564Search in Google Scholar

Shi W., Hoeflich A., Flaswinkel H., Stojkovic M., Wolf E., Zakhartchenko V. (2003 b). Induction ofasenescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol. Reprod., 69: 301-309.10.1095/biolreprod.102.01211212646489Search in Google Scholar

Shi W., Dirim F., Wolf E., Zakhartchenko V., Haaf T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod., 71: 340-347.Search in Google Scholar

Sim B.W., Park C.W., Kang M.H., Min KS. (2017). Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol., 17: 34.Search in Google Scholar

Simonsson S., Gurdon J. (2004). DNAdemethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol., 6: 984-990.Search in Google Scholar

Srirattana K., Matsukawa K., Akagi S., Tasai M., Tagami T., Nirasawa K., Na -gai T., Kanai Y., Parnpai R., Takeda K. (2011). Constant transmission of mitochondrial DNAin intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim. Sci. J., 82: 236-243.Search in Google Scholar

Srivastava M., Frolova E., Rottinghaus B., Boe S.P., Grinberg A., Lee E., Love P.E., Pfeifer K. (2003). Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J. Biol. Chem., 278: 5977-5983.Search in Google Scholar

Vignon X., Zhou Q., Renard J.P. (2002). Chromatin asaregulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells, 4: 363-377.Search in Google Scholar

Wang Y., Su J., Wang L., Xu W., Quan F., Liu J., Zhang Y. (2011). The effects of 5-aza-2'- deoxycytidine and trichostatin Aon gene expression and DNAmethylation status in cloned bovine blastocysts. Cell. Reprogram., 13: 297-306.Search in Google Scholar

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55-65.Search in Google Scholar

Whitworth K.M., Prather R.S. (2010). Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming? Mol. Reprod. Dev., 77: 1001-1015.Search in Google Scholar

Wrenzycki C., Lucas- Hahn A., Herrmann D., Lemme E., Korsawe K., Nie-mann H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod., 66: 127-134.Search in Google Scholar

Wrenzycki C., Niemann H. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online, 7: 649-656.Search in Google Scholar

Xie B., Zhang H., Wei R., Li Q., Weng X., Kong Q., Liu Z. (2016). Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction, 151: 9-16.Search in Google Scholar

Yamanaka K., Sugimura S., Wakai T., Kawahara M., Sato E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev., 55: 638-644.Search in Google Scholar

Yamazaki Y., Mellissa R., Mann M.R.W., Lee S.S., Marh J., Mc Carrey J.R., Yanagi -machi R., Bartolomei M.S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA, 100: 12207-12212.Search in Google Scholar

Yan Z.H., Zhou Y.Y., Fu J., Jiao F., Zhao L.W., Guan P.F., Huang S.Z., Zeng Y.T., Zeng F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol., 10: 31.Search in Google Scholar

Yan H., Yan Z., Ma Q., Jiao F., Huang S., Zeng F., Zeng Y. (2011). Association between mitochondrial DNAhaplotype compatibility and increased efficiency of bovine intersubspecies cloning. J. Genet. Genomics, 38: 21-28.Search in Google Scholar

Yang X., Smith S.L., Tian X.C., Lewin H.A., Renard J.P., Wakayama T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet., 39: 295-302.Search in Google Scholar

Young L.E., Schnieke A.E., Mc Creath K.J., Wieckowski S., Konfortova G., Fer-nandes K., Ptak G., Kind A.J., Wilmut I., Loi P., Feil R. (2003). Conservation of IGF2- H19 and IGF2Rimprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev., 120: 1433-1442.Search in Google Scholar

Zhang X., Wang D., Han Y., Duan F., Lv Q., Li Z. (2014). Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J. Assist. Reprod. Genet., 31: 1511-1517.Search in Google Scholar

Zhang Z., Zhai Y., Ma X., Zhang S., An X., Yu H., Li Z. (2018). Down-regulation of H3K- 4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell. Physiol. Biochem., 45: 1529-1540.Search in Google Scholar

Zhao J., Whyte J., Prather R.S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res., 341: 13-21.Search in Google Scholar

Zuo Y., Su G., Cheng L., Liu K., Feng Y., Wei Z., Bai C., Cao G., Li G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8: 65847-65859.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo