Open Access

First-principles calculations of magnetic and mechanical properties of Fe-based nanocrystalline alloy Fe80Si10Nb6B2Cu2


Cite

Based on the first-principles calculation method of density functional theory (DFT), the crystal structure, band structure, magnetic moment, density of state, elastic constant and population analysis of Fe80Si10Nb6B2Cu2 are calculated. The calculation results show that the Fe-based nanocrystalline alloy of this composition has a stable structure, strong resistance to deformation, high hardness and is an alloy with good flexibility. The energy band structure of spin-up and spin-down is basically the same, and the energy gap is 0 eV, showing metallicity. The asymmetry of the electronic state density between the spin-up and spin-down states indicates that the alloy is ferromagnetic, with a magnetic moment of 84.15 μ; the Fe element plays a decisive role in the magnetic properties of this alloy.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics