Open Access

Research on thermal error compensation strategy of CNC machine tools based on full working area modeling

  
Nov 14, 2024

Cite
Download Cover

Wu, B., Yin, Y., Zhang, Y., & Luo, M. (2019). A new approach to geometric error modeling and compensation for a three-axis machine tool. The International Journal of Advanced Manufacturing Technology, 102, 1249-1256. Search in Google Scholar

Yao, X., Hu, T., Yin, G., & Cheng, C. (2020). Thermal error modeling and prediction analysis based on OM algorithm for machine tool’s spindle. The international journal of advanced manufacturing technology, 106, 3345-3356. Search in Google Scholar

Vahebi, M., & Arezoo, B. (2018). Accuracy improvement of volumetric error modeling in CNC machine tools. The International Journal of Advanced Manufacturing Technology, 95, 2243-2257. Search in Google Scholar

Zhu, M., Yang, Y., Feng, X., Du, Z., & Yang, J. (2023). Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. Journal of Intelligent Manufacturing, 34(4), 2013-2026. Search in Google Scholar

Li, B., Tian, X., & Zhang, M. (2019). Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network. The International Journal of Advanced Manufacturing Technology, 105, 1497-1505. Search in Google Scholar

Zapłata, J., & Pajor, M. (2019). Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60, 160-166. Search in Google Scholar

Ma, C., Zhao, L., Mei, X., Shi, H., & Yang, J. (2017). Thermal error compensation of high-speed spindle system based on a modified BP neural network. The International Journal of Advanced Manufacturing Technology, 89, 3071-3085. Search in Google Scholar

Zhao, D., Bi, Y., & Ke, Y. (2017). An efficient error compensation method for coordinated CNC five-axis machine tools. International Journal of Machine Tools and Manufacture, 123, 105-115. Search in Google Scholar

Huang, Y. B., Fan, K. C., Lou, Z. F., & Sun, W. (2020). A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles. International Journal of Machine Tools and Manufacture, 151, 103527. Search in Google Scholar

Ma, C., Liu, J., & Wang, S. (2020). Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175, 105531. Search in Google Scholar

Lyu, D., Liu, Q., Liu, H., & Zhao, W. (2020). Dynamic error of CNC machine tools: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 106, 1869-1891. Search in Google Scholar

Grama, S. N., Mathur, A., & Badhe, A. N. (2018). A model-based cooling strategy for motorized spindle to reduce thermal errors. International Journal of Machine Tools and Manufacture, 132, 3-16. Search in Google Scholar

Liu, J., Ma, C., Gui, H., & Wang, S. (2021). Thermally-induced error compensation of spindle system based on long short term memory neural networks. Applied Soft Computing, 102, 107094. Search in Google Scholar

Li, Y., Zhang, Y., & An, N. (2024). Accuracy reliability analysis of CNC machine tools considering manufacturing errors degrees. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 238(3), 643-653. Search in Google Scholar

Sa, G., Sun, J., Hou, M., Jiang, Z., Liu, Z., Mao, H., ... & Tan, J. (2024). A digital twin synchronous evolution method of CNC machine tools associated with dynamic and static errors. The International Journal of Advanced Manufacturing Technology, 1-11. Search in Google Scholar

Li, Y., Yu, M., Bai, Y., Hou, Z., & Wu, W. (2021). A review of thermal error modeling methods for machine tools. Applied Sciences, 11(11), 5216. Search in Google Scholar

Wei, X., Miao, E., Liu, H., Liu, S., & Chen, S. (2019). Two-dimensional thermal error compensation modeling for worktable of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 101, 501-509. Search in Google Scholar

Mareš, M., Horejš, O., & Havlík, L. (2020). Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precision Engineering, 66, 21-30. Search in Google Scholar

Blaser, P., Pavliček, F., Mori, K., Mayr, J., Weikert, S., & Wegener, K. (2017). Adaptive learning control for thermal error compensation of 5-axis machine tools. Journal of Manufacturing Systems, 44, 302-309. Search in Google Scholar

Liu, Y., Miao, E., Liu, H., & Chen, Y. (2020). Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology. The International Journal of Advanced Manufacturing Technology, 106, 655-669. Search in Google Scholar

Liu, H., Miao, E. M., Wei, X. Y., & Zhuang, X. D. (2017). Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. International journal of machine tools and manufacture, 113, 35-48. Search in Google Scholar

Liu, K., Li, T., Wang, Y., Sun, M., Wu, Y., & Zhu, T. (2018). Physically based modeling method for comprehensive thermally induced errors of CNC machining centers. The International Journal of Advanced Manufacturing Technology, 94, 463-474. Search in Google Scholar

Liu, J., Ma, C., & Wang, S. (2020). Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools. Mechanical Systems and Signal Processing, 138, 106538. Search in Google Scholar

Liu, P. L., Du, Z. C., Li, H. M., Deng, M., Feng, X. B., & Yang, J. G. (2021). Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Advances in Manufacturing, 9, 235-249. Search in Google Scholar

Zhou, Z. D., Gui, L., Tan, Y. G., Liu, M. Y., Liu, Y., & Li, R. Y. (2017). Actualities and development of heavy-duty CNC machine tool thermal error monitoring technology. Chinese Journal of Mechanical Engineering, 30, 1262-1281. Search in Google Scholar

Nai Hao Zheng,Wei Ping Zhang,Yong Zhou & Yang Liu. (2024). Confinement strength prediction of corroded rectangular concrete columns using BP neural networks and support vector regression. Structures107021-107021. Search in Google Scholar

Seyed Mahyar Hosseini,Mirsaeid Hosseini Shirvani & Homayun Motameni. (2024). Multi-objective discrete Cuckoo search algorithm for optimization of bag-of-tasks scheduling in fog computing environment. Computers and Electrical Engineering(PA),109480-109480. Search in Google Scholar

Yin Guofu. (2012). An Improved Quantum Particle Swarm Optimization Algorithm Based on Real Coding Method. International Journal of Advancements in Computing Technology(3),181-188. Search in Google Scholar

Xuedong Zhu,Jianhua Liu,Xiaohui Ao,Sen He,Lei Tao & Feng Gao. (2024). A Best-Fitting B-Spline Neural Network Approach to the Prediction of Advection–Diffusion Physical Fields with Absorption and Source Terms. Entropy(7),577-577. Search in Google Scholar

Lei Lu & Li Da Zhang. (2014). 3D Geometric Modeling of Francis Turbine Blades Based on Wooden Patterns and UG Software. Applied Mechanics and Materials(596-596),606-609. Search in Google Scholar

Xuanlin Ye,Jingjie Yin,Jin Cai & Lianjiang Xu. (2020). Modeling and Simulation of K2x8 Five Axis Machine Tool Based on VERICUT 8.0.(eds.)Proceedings of 2020 4th International Conference on Electrical,Automation and Mechanical Engineering(EAME2020)(pp.559-563). College of Mechanical and Electrical Engineering, Yunnan Open University. Search in Google Scholar

Language:
English