Accesso libero

Research on thermal error compensation strategy of CNC machine tools based on full working area modeling

  
14 nov 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Wu, B., Yin, Y., Zhang, Y., & Luo, M. (2019). A new approach to geometric error modeling and compensation for a three-axis machine tool. The International Journal of Advanced Manufacturing Technology, 102, 1249-1256. Search in Google Scholar

Yao, X., Hu, T., Yin, G., & Cheng, C. (2020). Thermal error modeling and prediction analysis based on OM algorithm for machine tool’s spindle. The international journal of advanced manufacturing technology, 106, 3345-3356. Search in Google Scholar

Vahebi, M., & Arezoo, B. (2018). Accuracy improvement of volumetric error modeling in CNC machine tools. The International Journal of Advanced Manufacturing Technology, 95, 2243-2257. Search in Google Scholar

Zhu, M., Yang, Y., Feng, X., Du, Z., & Yang, J. (2023). Robust modeling method for thermal error of CNC machine tools based on random forest algorithm. Journal of Intelligent Manufacturing, 34(4), 2013-2026. Search in Google Scholar

Li, B., Tian, X., & Zhang, M. (2019). Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network. The International Journal of Advanced Manufacturing Technology, 105, 1497-1505. Search in Google Scholar

Zapłata, J., & Pajor, M. (2019). Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60, 160-166. Search in Google Scholar

Ma, C., Zhao, L., Mei, X., Shi, H., & Yang, J. (2017). Thermal error compensation of high-speed spindle system based on a modified BP neural network. The International Journal of Advanced Manufacturing Technology, 89, 3071-3085. Search in Google Scholar

Zhao, D., Bi, Y., & Ke, Y. (2017). An efficient error compensation method for coordinated CNC five-axis machine tools. International Journal of Machine Tools and Manufacture, 123, 105-115. Search in Google Scholar

Huang, Y. B., Fan, K. C., Lou, Z. F., & Sun, W. (2020). A novel modeling of volumetric errors of three-axis machine tools based on Abbe and Bryan principles. International Journal of Machine Tools and Manufacture, 151, 103527. Search in Google Scholar

Ma, C., Liu, J., & Wang, S. (2020). Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175, 105531. Search in Google Scholar

Lyu, D., Liu, Q., Liu, H., & Zhao, W. (2020). Dynamic error of CNC machine tools: a state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 106, 1869-1891. Search in Google Scholar

Grama, S. N., Mathur, A., & Badhe, A. N. (2018). A model-based cooling strategy for motorized spindle to reduce thermal errors. International Journal of Machine Tools and Manufacture, 132, 3-16. Search in Google Scholar

Liu, J., Ma, C., Gui, H., & Wang, S. (2021). Thermally-induced error compensation of spindle system based on long short term memory neural networks. Applied Soft Computing, 102, 107094. Search in Google Scholar

Li, Y., Zhang, Y., & An, N. (2024). Accuracy reliability analysis of CNC machine tools considering manufacturing errors degrees. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 238(3), 643-653. Search in Google Scholar

Sa, G., Sun, J., Hou, M., Jiang, Z., Liu, Z., Mao, H., ... & Tan, J. (2024). A digital twin synchronous evolution method of CNC machine tools associated with dynamic and static errors. The International Journal of Advanced Manufacturing Technology, 1-11. Search in Google Scholar

Li, Y., Yu, M., Bai, Y., Hou, Z., & Wu, W. (2021). A review of thermal error modeling methods for machine tools. Applied Sciences, 11(11), 5216. Search in Google Scholar

Wei, X., Miao, E., Liu, H., Liu, S., & Chen, S. (2019). Two-dimensional thermal error compensation modeling for worktable of CNC machine tools. The International Journal of Advanced Manufacturing Technology, 101, 501-509. Search in Google Scholar

Mareš, M., Horejš, O., & Havlík, L. (2020). Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precision Engineering, 66, 21-30. Search in Google Scholar

Blaser, P., Pavliček, F., Mori, K., Mayr, J., Weikert, S., & Wegener, K. (2017). Adaptive learning control for thermal error compensation of 5-axis machine tools. Journal of Manufacturing Systems, 44, 302-309. Search in Google Scholar

Liu, Y., Miao, E., Liu, H., & Chen, Y. (2020). Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology. The International Journal of Advanced Manufacturing Technology, 106, 655-669. Search in Google Scholar

Liu, H., Miao, E. M., Wei, X. Y., & Zhuang, X. D. (2017). Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. International journal of machine tools and manufacture, 113, 35-48. Search in Google Scholar

Liu, K., Li, T., Wang, Y., Sun, M., Wu, Y., & Zhu, T. (2018). Physically based modeling method for comprehensive thermally induced errors of CNC machining centers. The International Journal of Advanced Manufacturing Technology, 94, 463-474. Search in Google Scholar

Liu, J., Ma, C., & Wang, S. (2020). Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools. Mechanical Systems and Signal Processing, 138, 106538. Search in Google Scholar

Liu, P. L., Du, Z. C., Li, H. M., Deng, M., Feng, X. B., & Yang, J. G. (2021). Thermal error modeling based on BiLSTM deep learning for CNC machine tool. Advances in Manufacturing, 9, 235-249. Search in Google Scholar

Zhou, Z. D., Gui, L., Tan, Y. G., Liu, M. Y., Liu, Y., & Li, R. Y. (2017). Actualities and development of heavy-duty CNC machine tool thermal error monitoring technology. Chinese Journal of Mechanical Engineering, 30, 1262-1281. Search in Google Scholar

Nai Hao Zheng,Wei Ping Zhang,Yong Zhou & Yang Liu. (2024). Confinement strength prediction of corroded rectangular concrete columns using BP neural networks and support vector regression. Structures107021-107021. Search in Google Scholar

Seyed Mahyar Hosseini,Mirsaeid Hosseini Shirvani & Homayun Motameni. (2024). Multi-objective discrete Cuckoo search algorithm for optimization of bag-of-tasks scheduling in fog computing environment. Computers and Electrical Engineering(PA),109480-109480. Search in Google Scholar

Yin Guofu. (2012). An Improved Quantum Particle Swarm Optimization Algorithm Based on Real Coding Method. International Journal of Advancements in Computing Technology(3),181-188. Search in Google Scholar

Xuedong Zhu,Jianhua Liu,Xiaohui Ao,Sen He,Lei Tao & Feng Gao. (2024). A Best-Fitting B-Spline Neural Network Approach to the Prediction of Advection–Diffusion Physical Fields with Absorption and Source Terms. Entropy(7),577-577. Search in Google Scholar

Lei Lu & Li Da Zhang. (2014). 3D Geometric Modeling of Francis Turbine Blades Based on Wooden Patterns and UG Software. Applied Mechanics and Materials(596-596),606-609. Search in Google Scholar

Xuanlin Ye,Jingjie Yin,Jin Cai & Lianjiang Xu. (2020). Modeling and Simulation of K2x8 Five Axis Machine Tool Based on VERICUT 8.0.(eds.)Proceedings of 2020 4th International Conference on Electrical,Automation and Mechanical Engineering(EAME2020)(pp.559-563). College of Mechanical and Electrical Engineering, Yunnan Open University. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro