This work is licensed under the Creative Commons Attribution 4.0 International License.
Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54, 100663.Search in Google Scholar
Kara, M. E., Fırat, S. Ü. O., & Ghadge, A. (2020). A data mining-based framework for supply chain risk management. Computers & Industrial Engineering, 139, 105570.Search in Google Scholar
Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., ... & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52, 77-124.Search in Google Scholar
Félix, I. M., Ambrósio, A. P., Neves, P. S., Siqueira, J., & Brancher, J. D. (2017, April). Moodle predicta: A data mining tool for student follow up. In International Conference on Computer Supported Education (Vol. 2, pp. 339-346). SCITEPRESS.Search in Google Scholar
Mary, T. S., & Sebastian, S. (2019). Predicting heart ailment in patients with varying number of features using data mining techniques. Int. J. Electr. Comput. Eng, 9(4), 2675-2681.Search in Google Scholar
Kumar, V., & Garg, M. L. (2018). Predictive analytics: a review of trends and techniques. International Journal of Computer Applications, 182(1), 31-37.Search in Google Scholar
Peres, R. S., Rocha, A. D., Leitao, P., & Barata, J. (2018). IDARTS–Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in industry, 101, 138-146.Search in Google Scholar
Wu, W. T., Li, Y. J., Feng, A. Z., Li, L., Huang, T., Xu, A. D., & Lyu, J. (2021). Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Medical Research, 8, 1-12.Search in Google Scholar
Khedr, A. E., & Yaseen, N. (2017). Predicting stock market behavior using data mining technique and news sentiment analysis. International Journal of Intelligent Systems and Applications, 9(7), 22.Search in Google Scholar
Abu-Dalbouh, H. M., & Alateyah, S. A. (2021). Predictive data mining rule-based classifiers model for novel coronavirus (COVID-19) infected patients’ recovery in the Kingdom of Saudi Arabia. J Theor Appl Inf Technol, 99(8), 19.Search in Google Scholar
Francis, B. K., & Babu, S. S. (2019). Predicting academic performance of students using a hybrid data mining approach. Journal of medical systems, 43(6), 162.Search in Google Scholar
Cheng, Y., Chen, K., Sun, H., Zhang, Y., & Tao, F. (2018). Data and knowledge mining with big data towards smart production. Journal of Industrial Information Integration, 9, 1-13.Search in Google Scholar
Hamdi, A., Shaban, K., Erradi, A., Mohamed, A., Rumi, S. K., & Salim, F. D. (2022). Spatiotemporal data mining: a survey on challenges and open problems. Artificial Intelligence Review, 1-48.Search in Google Scholar
Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Van Erven, G. (2019). Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of business research, 94, 335-343.Search in Google Scholar
Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, e1.Search in Google Scholar
Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4), 1-41.Search in Google Scholar
Ratner, B. (2017). Statistical and machine-learning data mining:: Techniques for better predictive modeling and analysis of big data. Chapman and Hall/CRC.Search in Google Scholar
Muhammad, L. J., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery. SN computer science, 1(4), 206.Search in Google Scholar
Wang, S., Cao, J., & Philip, S. Y. (2020). Deep learning for spatio-temporal data mining: A survey. IEEE transactions on knowledge and data engineering, 34(8), 3681-3700.Search in Google Scholar
Sulhi, A. (2021). Data mining technology used in an Internet of Things-based decision support system for information processing intelligent manufacturing. International Journal of Informatics and Information Systems, 4(3), 168-179.Search in Google Scholar
Bojana, N., Jelena, I., Suzic, N., Branislav, S., & Aleksandar, R. (2017). Predictive manufacturing systems in industry 4.0: Trends, benefits and challenges. In Proceedings of 28th DAAAM International Symposium on Intelligent Manufacturing and Automation (pp. 796-802). DAAAM International, Vienna, Austria.Search in Google Scholar
Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4), 1243-1257.Search in Google Scholar
Graham, B., Bond, R., Quinn, M., & Mulvenna, M. (2018). Using data mining to predict hospital admissions from the emergency department. IEEE Access, 6, 10458-10469.Search in Google Scholar
Roiger, R. J. (2017). Data mining: a tutorial-based primer. Chapman and Hall/CRC.Search in Google Scholar
Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Ieee Access, 5, 20590-20616.Search in Google Scholar
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., ... & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE transactions on knowledge and data engineering, 33(8), 3048-3061.Search in Google Scholar
Yuxing Li & Qiyu Ding. (2024). Fusion entropy and its spatial post-multiscale version: Methodology and application. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena115345-115345.Search in Google Scholar
Sha Fu & Ye zhi Xiao. (2024). Study on venture capital multi-attribute group decision-making based on improved Hamming-Hausdorff distance and weighted bidirectional projection. Biomedical Signal Processing and Control105985-.Search in Google Scholar
Zhang Yifan & Yu Wenhao. (2024). Detecting common features from point patterns for similarity measurement using matrix decomposition. Cartography and Geographic Information Science(3), 462-485.Search in Google Scholar
Vafaei Nazanin,Ribeiro Rita A. & Camarinha-Matos Luis M. (2022). Assessing Normalization Techniques for Simple Additive Weighting Method. Procedia Computer Science1229-1236.Search in Google Scholar