Accesso libero

Strategies and Practices of Intelligent Imputation in Data Mining Based on Contact Number Evaluation

  
11 nov 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Nguyen, B. H., Xue, B., & Zhang, M. (2020). A survey on swarm intelligence approaches to feature selection in data mining. Swarm and Evolutionary Computation, 54, 100663. Search in Google Scholar

Kara, M. E., Fırat, S. Ü. O., & Ghadge, A. (2020). A data mining-based framework for supply chain risk management. Computers & Industrial Engineering, 139, 105570. Search in Google Scholar

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., ... & Hluchý, L. (2019). Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52, 77-124. Search in Google Scholar

Félix, I. M., Ambrósio, A. P., Neves, P. S., Siqueira, J., & Brancher, J. D. (2017, April). Moodle predicta: A data mining tool for student follow up. In International Conference on Computer Supported Education (Vol. 2, pp. 339-346). SCITEPRESS. Search in Google Scholar

Mary, T. S., & Sebastian, S. (2019). Predicting heart ailment in patients with varying number of features using data mining techniques. Int. J. Electr. Comput. Eng, 9(4), 2675-2681. Search in Google Scholar

Kumar, V., & Garg, M. L. (2018). Predictive analytics: a review of trends and techniques. International Journal of Computer Applications, 182(1), 31-37. Search in Google Scholar

Peres, R. S., Rocha, A. D., Leitao, P., & Barata, J. (2018). IDARTS–Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in industry, 101, 138-146. Search in Google Scholar

Wu, W. T., Li, Y. J., Feng, A. Z., Li, L., Huang, T., Xu, A. D., & Lyu, J. (2021). Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Medical Research, 8, 1-12. Search in Google Scholar

Khedr, A. E., & Yaseen, N. (2017). Predicting stock market behavior using data mining technique and news sentiment analysis. International Journal of Intelligent Systems and Applications, 9(7), 22. Search in Google Scholar

Abu-Dalbouh, H. M., & Alateyah, S. A. (2021). Predictive data mining rule-based classifiers model for novel coronavirus (COVID-19) infected patients’ recovery in the Kingdom of Saudi Arabia. J Theor Appl Inf Technol, 99(8), 19. Search in Google Scholar

Francis, B. K., & Babu, S. S. (2019). Predicting academic performance of students using a hybrid data mining approach. Journal of medical systems, 43(6), 162. Search in Google Scholar

Cheng, Y., Chen, K., Sun, H., Zhang, Y., & Tao, F. (2018). Data and knowledge mining with big data towards smart production. Journal of Industrial Information Integration, 9, 1-13. Search in Google Scholar

Hamdi, A., Shaban, K., Erradi, A., Mohamed, A., Rumi, S. K., & Salim, F. D. (2022). Spatiotemporal data mining: a survey on challenges and open problems. Artificial Intelligence Review, 1-48. Search in Google Scholar

Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Van Erven, G. (2019). Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of business research, 94, 335-343. Search in Google Scholar

Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, e1. Search in Google Scholar

Atluri, G., Karpatne, A., & Kumar, V. (2018). Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys (CSUR), 51(4), 1-41. Search in Google Scholar

Ratner, B. (2017). Statistical and machine-learning data mining:: Techniques for better predictive modeling and analysis of big data. Chapman and Hall/CRC. Search in Google Scholar

Muhammad, L. J., Islam, M. M., Usman, S. S., & Ayon, S. I. (2020). Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery. SN computer science, 1(4), 206. Search in Google Scholar

Wang, S., Cao, J., & Philip, S. Y. (2020). Deep learning for spatio-temporal data mining: A survey. IEEE transactions on knowledge and data engineering, 34(8), 3681-3700. Search in Google Scholar

Sulhi, A. (2021). Data mining technology used in an Internet of Things-based decision support system for information processing intelligent manufacturing. International Journal of Informatics and Information Systems, 4(3), 168-179. Search in Google Scholar

Bojana, N., Jelena, I., Suzic, N., Branislav, S., & Aleksandar, R. (2017). Predictive manufacturing systems in industry 4.0: Trends, benefits and challenges. In Proceedings of 28th DAAAM International Symposium on Intelligent Manufacturing and Automation (pp. 796-802). DAAAM International, Vienna, Austria. Search in Google Scholar

Gupta, M. K., & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4), 1243-1257. Search in Google Scholar

Graham, B., Bond, R., Quinn, M., & Mulvenna, M. (2018). Using data mining to predict hospital admissions from the emergency department. IEEE Access, 6, 10458-10469. Search in Google Scholar

Roiger, R. J. (2017). Data mining: a tutorial-based primer. Chapman and Hall/CRC. Search in Google Scholar

Ge, Z., Song, Z., Ding, S. X., & Huang, B. (2017). Data mining and analytics in the process industry: The role of machine learning. Ieee Access, 5, 20590-20616. Search in Google Scholar

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., ... & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE transactions on knowledge and data engineering, 33(8), 3048-3061. Search in Google Scholar

Yuxing Li & Qiyu Ding. (2024). Fusion entropy and its spatial post-multiscale version: Methodology and application. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena115345-115345. Search in Google Scholar

Sha Fu & Ye zhi Xiao. (2024). Study on venture capital multi-attribute group decision-making based on improved Hamming-Hausdorff distance and weighted bidirectional projection. Biomedical Signal Processing and Control105985-. Search in Google Scholar

Zhang Yifan & Yu Wenhao. (2024). Detecting common features from point patterns for similarity measurement using matrix decomposition. Cartography and Geographic Information Science(3), 462-485. Search in Google Scholar

Vafaei Nazanin,Ribeiro Rita A. & Camarinha-Matos Luis M. (2022). Assessing Normalization Techniques for Simple Additive Weighting Method. Procedia Computer Science1229-1236. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Matematica, Matematica applicata, Matematica generale, Fisica, Fisica, altro