This work is licensed under the Creative Commons Attribution 4.0 International License.
Zhang, H., Chen, W. D., & Wang, J. C. (2015). Human-robot shared control for multi-robot exploration system. Robot, 37(1), 17-24.Search in Google Scholar
Chen, J., & Zheng, M. (2022). A survey of robot manipulation behavior research based on deep reinforcement learning. Robot, 44(2), 236-256.Search in Google Scholar
Shin, K., Kim, D., Park, H., Sim, M., Jang, H., Sohn, J. I., Cha, S. N., & Jang, J. E. (2020). Artificial tactile sensor with pin-type module for depth profile and surface topography detection. IEEE Transactions on Industrial Electronics, 67(1), 637-646.Search in Google Scholar
Li, Y., Wu, G., Song, G., Lu, S. H., Wang, Z., Sun, H., Zhang, Y., & Wang, X. (2022). Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. Advanced Materials Technologies, 7(8), 2400-2409.Search in Google Scholar
Chen, Z. C., Wang, Y. C., Xi, K. L., Mei, D. Q., & Liang, G. H. (2016). A flexible tactile sensor array based on pressure conductive rubber for contact force measurement and slip detection. Journal of Robotics and Mechatronics, 28(3), 378-385.Search in Google Scholar
Liang, J. L., Wu, J. H., Huang, H. L., Xu, W. F., Li, B., & Xi, F. (2019). Soft sensitive skin for safety control of a nursing robot using proximity and tactile sensors. IEEE Sensors Journal, 20(7), 3822-3830.Search in Google Scholar
David, S. T., David, R., & Mari, V. (2015). Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems, 63(3), 230-243.Search in Google Scholar
Liu, H. P., Wu, Y. P., Sun, F. C., & Guo, D. (2017). Recent progress on tactile object recognition. International Journal of Advanced Robotic Systems, 14(4), 1-12.Search in Google Scholar
Guan, X., Wang, Z., Zhao, W., Huang, H., Wang, S., Zhang, Q., Zhong, D., Lin, W., Ding, N., & Peng, Z. (2020). Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS Applied Materials and Interfaces, 12(23), 26137-26144.Search in Google Scholar
Sonali, B., & Anup, K. G. (2019). A wearable piezoresistive microaccelerometer with low cross-axis sensitivity for neurological disease diagnosis. AEU - International Journal of Electronics and Communications, 99, 177-185.Search in Google Scholar
Pang, C. Y., Lee, G. Y., Kim, T., Kim, S. M., Kim, H. N., Ahn, S. H., & Suh, K. Y. (2012). A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nature Materials, 11(9), 795-801.Search in Google Scholar
Zhu, B., Niu, Z. Q., Wang, H., Leow, W. R., Wang, H., Li, Y. G., Zheng, L. Y., Wei, J., Huo, F. W., & Chen, X. D. (2014). Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 10(18), 3652-3631.Search in Google Scholar
Ha, M. J., Lim, S. D., Park, J., Um, D. S., Lee, Y., & Ko, H. (2015). Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Advanced Functional Materials, 25(19), 2841-2849.Search in Google Scholar
Zhang, Y., Hu, Y. G., Zhu, P. L., Han, F., Zhu, Y., Sun, R., & Wong, C. P. (2017). Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Applied Materials and Interfaces, 9(41), 35968-35976.Search in Google Scholar
Wang, Y., Gong, S., Wang, S. J., Yang, X. Y., Lin, Y. Z., Yap, L. W., Dong, D. S., Simon, G. P., & Cheng, W. L. (2018). Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano, 12(10), 9742-9749.Search in Google Scholar
Yao, Y., & Glisic, B. (2015). Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors, 15(4), 8088–8108.Search in Google Scholar
Wang, Z. F., Jiang, R. J., Li, G. M., Chen, Y. Y., Tang, Z. J., Wang, Y. K., Liu, Z. X., Jiang, H. B., & Zhi, C. Y. (2017). Flexible dual-mode tactile sensor derived from three-dimensional porous carbon architecture. ACS Applied Materials and Interfaces, 9(27), 22685-22693.Search in Google Scholar
Xu, Z. P., Zhao, S., Lv, X. R., Ge, X. Y., Guo, Y. X., Han, R. Y., Gong, C. B., Bian, F., Tian, J. F., & Gao, J. (2022). Highly sensitive and low detection limit flexible pressure sensor based on modified TiO2 cocooned elastic sponge for wearable application. IEEE Sensors Journal, 22(23), 22479-22486.Search in Google Scholar
Tian, Y., Wang, D. Y., Li, Y. T., Tian, H., Yang, Y., & Ren, T. L. (2020). Highly sensitive, wide-range, and flexible pressure sensor based on honeycomb-like graphene network. IEEE Transactions on Electron Devices, 67(5), 2153-2156.Search in Google Scholar
Feng, C. F., Yi, Z. F., Jin, X., Seraji, S. M., Dong, Y. J., Kong, L. X., & Salim, N. (2020). Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Composites, Part B: Engineering, 194, 108065.Search in Google Scholar
Pang, Y., Tian, H., Tao, L. Q., Li, Y. X., Wang, X. F., Deng, N. Q., Yang, Y., & Ren, T. L. (2016). Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Applied Materials and Interfaces, 8(40), 26458-26462.Search in Google Scholar
Zhao, T. T., Li, T. K., Chen, L. L., Yuan, L., Li, X. F., & Zhang, J. H. (2019). Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Applied Materials and Interfaces, 11(32), 29466-29473.Search in Google Scholar
Yuan, J. X., Li, Q., Ding, L. F., Shi, C. C., Wang, Q., Niu, Y. L., & Xu, C. Y. (2022). Carbon black/multi-walled carbon nanotube-based, highly sensitive, flexible pressure sensor. ACS Omega, 7(48), 44428-44437.Search in Google Scholar
Wang, M., Zhang, K., Dai, X. X., Li, Y., Guo, J., Liu, H., Li, G. H., Tan, Y. J., Zeng, J. B., & Guo, Z. (2017). Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 9(31), 11017-11026.Search in Google Scholar
Feng, P. D., Yuan, Y. H., Zhong, M., Shao, J., Liu, X. L., Xu, J., Zhang, J. H., Li, K., & Zhao, W. W. (2020). Integrated resistive-capacitive strain sensors based on polymer–nanoparticle composites. ACS Applied Nano Materials, 3(5), 4357-4366.Search in Google Scholar
Abshirini, M., Charara, M., Marashizadeh, P., Saha, M. C., Altan, M. C., & Liu, Y. T. (2019). Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience, 9, 2071–2083.Search in Google Scholar
Jing, W. J., Yang, C., Wu, Y., Zhao, Q., Chen, L., & Li, G. (2020). CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures. Nanotechnology, 31(43), 435501.Search in Google Scholar
Wang, Z. H., Zhang, L., Liu, J., Jiang, H., & Li, C. Z. (2018). Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method. Nanoscale, 10(22), 10691-10698.Search in Google Scholar
Lu, Y. W., He, Y., Qiao, J. T., Niu, X., Li, X. J., Liu, H., & Liu, L. (2020). Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation. ACS Applied Materials and Interfaces, 12(49), 55169-55180.Search in Google Scholar
Wang, Z. H., Sun, S. M., Li, N., Yao, T., & Lu, D. L. (2020). Triboelectric self-powered three-dimensional tactile sensor. IEEE Access, 8, 172076-172085.Search in Google Scholar
Jung, Y., Lee, D. G., Park, J., K. H., & Lim, H. (2015). Piezoresistive tactile sensor discriminating multidirectional forces. Sensors, 15(10), 25463-25473.Search in Google Scholar
Ma, C., Wang, M., Wang, K., Uzabakiriho, P. C., Chen, X., & Zhao, G. (2023). Ultrasensitive, highly selective, integrated multidimensional sensor based on a rigid-flexible synergistic stretchable substrate. Advanced Fiber Materials, 5(4), 1392-1403.Search in Google Scholar
Song, Y., Wang, F. L., & Zhang, Z. Y. (2018). Decoupling research of a novel three-dimensional force flexible tactile sensor based on an improved BP algorithm. Micromachines, 9(5), 236.Search in Google Scholar
Wu, Y. Q., Gao, R. L., & Yang, J. Z. (2020). Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA. Process Safety and Environmental Protection, 133, 64-72.Search in Google Scholar