Uneingeschränkter Zugang

Three-dimensional Force Detection and Decoupling of a Flexible Tactile Sensor Array based on Porous Composite Piezoresistive Materials

, , ,  und   
13. Juni 2024

Zitieren
COVER HERUNTERLADEN

Zhang, H., Chen, W. D., & Wang, J. C. (2015). Human-robot shared control for multi-robot exploration system. Robot, 37(1), 17-24. Search in Google Scholar

Chen, J., & Zheng, M. (2022). A survey of robot manipulation behavior research based on deep reinforcement learning. Robot, 44(2), 236-256. Search in Google Scholar

Shin, K., Kim, D., Park, H., Sim, M., Jang, H., Sohn, J. I., Cha, S. N., & Jang, J. E. (2020). Artificial tactile sensor with pin-type module for depth profile and surface topography detection. IEEE Transactions on Industrial Electronics, 67(1), 637-646. Search in Google Scholar

Li, Y., Wu, G., Song, G., Lu, S. H., Wang, Z., Sun, H., Zhang, Y., & Wang, X. (2022). Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments. Advanced Materials Technologies, 7(8), 2400-2409. Search in Google Scholar

Chen, Z. C., Wang, Y. C., Xi, K. L., Mei, D. Q., & Liang, G. H. (2016). A flexible tactile sensor array based on pressure conductive rubber for contact force measurement and slip detection. Journal of Robotics and Mechatronics, 28(3), 378-385. Search in Google Scholar

Liang, J. L., Wu, J. H., Huang, H. L., Xu, W. F., Li, B., & Xi, F. (2019). Soft sensitive skin for safety control of a nursing robot using proximity and tactile sensors. IEEE Sensors Journal, 20(7), 3822-3830. Search in Google Scholar

David, S. T., David, R., & Mari, V. (2015). Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems, 63(3), 230-243. Search in Google Scholar

Liu, H. P., Wu, Y. P., Sun, F. C., & Guo, D. (2017). Recent progress on tactile object recognition. International Journal of Advanced Robotic Systems, 14(4), 1-12. Search in Google Scholar

Guan, X., Wang, Z., Zhao, W., Huang, H., Wang, S., Zhang, Q., Zhong, D., Lin, W., Ding, N., & Peng, Z. (2020). Flexible piezoresistive sensors with wide-range pressure measurements based on a graded nest-like architecture. ACS Applied Materials and Interfaces, 12(23), 26137-26144. Search in Google Scholar

Sonali, B., & Anup, K. G. (2019). A wearable piezoresistive microaccelerometer with low cross-axis sensitivity for neurological disease diagnosis. AEU - International Journal of Electronics and Communications, 99, 177-185. Search in Google Scholar

Pang, C. Y., Lee, G. Y., Kim, T., Kim, S. M., Kim, H. N., Ahn, S. H., & Suh, K. Y. (2012). A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers. Nature Materials, 11(9), 795-801. Search in Google Scholar

Zhu, B., Niu, Z. Q., Wang, H., Leow, W. R., Wang, H., Li, Y. G., Zheng, L. Y., Wei, J., Huo, F. W., & Chen, X. D. (2014). Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small, 10(18), 3652-3631. Search in Google Scholar

Ha, M. J., Lim, S. D., Park, J., Um, D. S., Lee, Y., & Ko, H. (2015). Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Advanced Functional Materials, 25(19), 2841-2849. Search in Google Scholar

Zhang, Y., Hu, Y. G., Zhu, P. L., Han, F., Zhu, Y., Sun, R., & Wong, C. P. (2017). Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Applied Materials and Interfaces, 9(41), 35968-35976. Search in Google Scholar

Wang, Y., Gong, S., Wang, S. J., Yang, X. Y., Lin, Y. Z., Yap, L. W., Dong, D. S., Simon, G. P., & Cheng, W. L. (2018). Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano, 12(10), 9742-9749. Search in Google Scholar

Yao, Y., & Glisic, B. (2015). Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors, 15(4), 8088–8108. Search in Google Scholar

Wang, Z. F., Jiang, R. J., Li, G. M., Chen, Y. Y., Tang, Z. J., Wang, Y. K., Liu, Z. X., Jiang, H. B., & Zhi, C. Y. (2017). Flexible dual-mode tactile sensor derived from three-dimensional porous carbon architecture. ACS Applied Materials and Interfaces, 9(27), 22685-22693. Search in Google Scholar

Xu, Z. P., Zhao, S., Lv, X. R., Ge, X. Y., Guo, Y. X., Han, R. Y., Gong, C. B., Bian, F., Tian, J. F., & Gao, J. (2022). Highly sensitive and low detection limit flexible pressure sensor based on modified TiO2 cocooned elastic sponge for wearable application. IEEE Sensors Journal, 22(23), 22479-22486. Search in Google Scholar

Tian, Y., Wang, D. Y., Li, Y. T., Tian, H., Yang, Y., & Ren, T. L. (2020). Highly sensitive, wide-range, and flexible pressure sensor based on honeycomb-like graphene network. IEEE Transactions on Electron Devices, 67(5), 2153-2156. Search in Google Scholar

Feng, C. F., Yi, Z. F., Jin, X., Seraji, S. M., Dong, Y. J., Kong, L. X., & Salim, N. (2020). Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Composites, Part B: Engineering, 194, 108065. Search in Google Scholar

Pang, Y., Tian, H., Tao, L. Q., Li, Y. X., Wang, X. F., Deng, N. Q., Yang, Y., & Ren, T. L. (2016). Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Applied Materials and Interfaces, 8(40), 26458-26462. Search in Google Scholar

Zhao, T. T., Li, T. K., Chen, L. L., Yuan, L., Li, X. F., & Zhang, J. H. (2019). Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS Applied Materials and Interfaces, 11(32), 29466-29473. Search in Google Scholar

Yuan, J. X., Li, Q., Ding, L. F., Shi, C. C., Wang, Q., Niu, Y. L., & Xu, C. Y. (2022). Carbon black/multi-walled carbon nanotube-based, highly sensitive, flexible pressure sensor. ACS Omega, 7(48), 44428-44437. Search in Google Scholar

Wang, M., Zhang, K., Dai, X. X., Li, Y., Guo, J., Liu, H., Li, G. H., Tan, Y. J., Zeng, J. B., & Guo, Z. (2017). Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 9(31), 11017-11026. Search in Google Scholar

Feng, P. D., Yuan, Y. H., Zhong, M., Shao, J., Liu, X. L., Xu, J., Zhang, J. H., Li, K., & Zhao, W. W. (2020). Integrated resistive-capacitive strain sensors based on polymer–nanoparticle composites. ACS Applied Nano Materials, 3(5), 4357-4366. Search in Google Scholar

Abshirini, M., Charara, M., Marashizadeh, P., Saha, M. C., Altan, M. C., & Liu, Y. T. (2019). Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience, 9, 2071–2083. Search in Google Scholar

Jing, W. J., Yang, C., Wu, Y., Zhao, Q., Chen, L., & Li, G. (2020). CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures. Nanotechnology, 31(43), 435501. Search in Google Scholar

Wang, Z. H., Zhang, L., Liu, J., Jiang, H., & Li, C. Z. (2018). Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method. Nanoscale, 10(22), 10691-10698. Search in Google Scholar

Lu, Y. W., He, Y., Qiao, J. T., Niu, X., Li, X. J., Liu, H., & Liu, L. (2020). Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation. ACS Applied Materials and Interfaces, 12(49), 55169-55180. Search in Google Scholar

Wang, Z. H., Sun, S. M., Li, N., Yao, T., & Lu, D. L. (2020). Triboelectric self-powered three-dimensional tactile sensor. IEEE Access, 8, 172076-172085. Search in Google Scholar

Jung, Y., Lee, D. G., Park, J., K. H., & Lim, H. (2015). Piezoresistive tactile sensor discriminating multidirectional forces. Sensors, 15(10), 25463-25473. Search in Google Scholar

Ma, C., Wang, M., Wang, K., Uzabakiriho, P. C., Chen, X., & Zhao, G. (2023). Ultrasensitive, highly selective, integrated multidimensional sensor based on a rigid-flexible synergistic stretchable substrate. Advanced Fiber Materials, 5(4), 1392-1403. Search in Google Scholar

Song, Y., Wang, F. L., & Zhang, Z. Y. (2018). Decoupling research of a novel three-dimensional force flexible tactile sensor based on an improved BP algorithm. Micromachines, 9(5), 236. Search in Google Scholar

Wu, Y. Q., Gao, R. L., & Yang, J. Z. (2020). Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA. Process Safety and Environmental Protection, 133, 64-72. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biologie, andere, Mathematik, Angewandte Mathematik, Mathematik, Allgemeines, Physik, Physik, andere