Open Access

Biotechnological for improving maize grain storage tolerance: progress and prospects

   | May 03, 2024

Cite

Jayas, D. S. Grain preservation. Search in Google Scholar

Qianyu, L. (1989). Grain and oil storage: Grain and oil storage. Search in Google Scholar

ruolan, W. (2009). Grain and oil storage: Grain and oil storage. Search in Google Scholar

Pettersson, T., Hgbladh, S., & Berg, M. (2019). Organized violence, 1989–2018 and peace agreements. Journal of Peace Research, 56(10155), 002234331985604. Search in Google Scholar

C, M. P. (1984). The origin of maize. Science (New York, N.Y.), 225(4667). Search in Google Scholar

Tongpingya. (1992). maize Planting Regionalization in China: maize Planting Regionalization in China. Search in Google Scholar

Neuffer, M. G., Coe, E. H., & Wessler, S. R. (1997). Mutants of maize: Mutants of Maize. Search in Google Scholar

Finch, H., Samuel, A. M., & Lane, G. (2002). Cereals. Search in Google Scholar

Liuehua, Jian, Z., & Chongyong. (2012). Characteristics of maize and safe storage technology. Grain circulation technology(4), 3. Search in Google Scholar

Bakhtavar, M. A., & Afzal, I. (2021). Seed Storage and Longevity: Mechanism, Types and Management: Advances in Seed Production and Management. Search in Google Scholar

liming, W., Qingcheng, W., & zhaodong, M. (2010). Maize Varieties and Their Genealogy in China:. Search in Google Scholar

Jing, L. (2018). Technology and characteristics of controlling temperature and N2 filling in a granary sealed with thin-film. Henan University of Technology. Search in Google Scholar

A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. (2020). Plant, Cell & Environment, 43(2). Search in Google Scholar

Moses, J. A., S., K., Vimala, Bharathi, Vishnu, Priya,.. Sujeetha. (2017). Insect infestation and losses in stored food grains. Ecology, Environment and Conservation, 23(1), 286–291. Search in Google Scholar

Magan, N., & Aldred, D. (2007). Post-harvest control strategies: Minimizing mycotoxins in the food chain. International Journal of Food Microbiology, 119(1–2), 131–139. Search in Google Scholar

Winch, T. (2006). Growing Food: A Guide to Food Production: Growing food: A guide to food production. Search in Google Scholar

Fan, F., Werf, W. V. D., Makowski, D., Lamichhane, J. R., & Zhang, F. (2021). Cover crops promote primary crop yield in China: A meta-regression of factors affecting yield gain. Field Crops Research, 271(79), 108237. Search in Google Scholar

Munhuweyi, K., Mpai, S., & Sivakumar, D. (2020). Extension of Avocado Fruit Postharvest Quality Using Non-Chemical Treatments. Agronomy, 10(2), 212. Search in Google Scholar

Changbiao, W., & Zhu, F. (2022). Analysis on the general situation of maize industry in China. seed science & technology, 40(8), 3. Search in Google Scholar

Frame, B., Warnberg, K., Main, M., & Wang, K. Maize (Zea mays L.). Methods in molecular biology (Clifton, N.J.), 1223, 101–117. Search in Google Scholar

Zhang, J., Xiang, S., & Wan, H. (2021). Negative Association between Seed Dormancy and Seed Longevity in Bread Wheat. ). Search in Google Scholar

Fitzgerald, M. A., Mccouch, S. R., & Hall, R. D. (2009). Not just a grain of rice: the quest for quality. Trends in Plant Science, 14(3), 133–139. Search in Google Scholar

Tao, J., Shuping, W., junsheng, Q., & Xiongchunxia. (2020). Transcriptomics technology and its research progress in plant systematics. Modern salt chemical industry, 47(4), 4. Search in Google Scholar

Guy, D., Hubbard, R. E., Oldfield, T. J., Smerdon, S. J., & Wilkinson, A. J. (1988). Apomyoglobin as a molecular recognition surface: expression, reconstitution and crystallization of recombinant porcine myoglobin in Escherichia coli. Protein Eng(3), 233–237. Search in Google Scholar

Polacco, M., & Coe, E. (2002). MaizeDB: The Maize Genome Database: Bioinformatics: Databases and Systems. Search in Google Scholar

Martienssen, R. A., Rabinowicz, P. D., O’Shaughnessy, A., & McCombie, W. R. (2004). Sequencing the maize genome. Current Opinion in Plant Biology, 7(2). Search in Google Scholar

junpin, Y., Rongtingzhao, Daoquan, Haitao, T., Liejian, H., & Jingrui, D. (2005). Gene mapping of quantitative traits in maize. Journal of crops, 31(002), 188–196. Search in Google Scholar

Fusheng, W., Jianwei, Z., Shiguo, Z., Ruifeng, H., Mary, S., Kristi, C.,.. A, W. R. (2009). The physical and genetic framework of the maize B73 genome. PLoS genetics, 5(11). Search in Google Scholar

Barbos, A., Moldovan, G., & Micu, O. (2016). THE INFLUENCE OF GENOTYPE TREATMENT AND STORAGE PERIOD ON AGEING PROCESS OF HYBRID maize SEEDS. Agricultura, 97(1–2). Search in Google Scholar

Xincheng, Z. Advances in genomics and its applications in tropical crops. https://doi.org/10.3969/j.issn.1000-2561.2020.10.019. Search in Google Scholar

Cohen-Tannoudji, M., Vandormael-Pournin, S., Bras, S. L., Coumailleau, F., & Baldacci, P. (2000). A 2-Mb YAC/BAC-based physical map of the Ovum mutant (Om) locus region on mouse chromosome 11. Genomics, 68(3), 273–282. Search in Google Scholar

Timm, N. d. S., Ramos, A. H., Ferreira, C. D., Rios, A. d. O., Zambiazi, R. C., & Oliveira, M. d. (2021). Influence of germ storage from different maize genotypes on technological properties and fatty acid, tocopherol, and carotenoid profiles of oil. European Food Research and Technology(prepublish). Search in Google Scholar

guanglei, C., Haijiao, Z., Jiuran, Z., Liuchunge, yuandong, W., wang, x.,.. tianjun, X. (2015). Seed vigor and physiological changes of different genotypes of maize under critical stress storage conditions. Chinese agricultural science, 48(01), 33–42. https://kns.cnki.net/kcms/detail/10.3864/j.issn.0578-1752.2015.01.04.html. Search in Google Scholar

Wu, C., Zhang, Y., Liu, T., & Tan, Y. (2004). Study on the change of quality index of maize during storage. Journal of Zhengzhou Institute of Engineering, 025(002), 50–52. Search in Google Scholar

Khaliq, A., Javed, M., Mansoor-ul-Hasan, M. S., Ahmad, M. H., & Sohail, H. A. G. M. (2018). General approach to quantitative and qualitative changes in the stored maize genotypes ecosystem infested bySitophilus zeamais (L.) under variable thermal thresholds. Life Science Journal, 15(3). Search in Google Scholar

Paneru, R. B., & Thapa, R. B. (2018). Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition. Journal of Maize Research and Development, 3(1), 108. Search in Google Scholar

Gomez, L. A., Rodriguez, J. G., Poneleit, C. G., Blake, D. F., & Smith, C. R. (1983). Influence of Nutritional Characteristics of Selected Corn Genotypes on Food Utilization by the Rice Weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 76(4), 728–732. Search in Google Scholar

Haitao, Y. U., Shujun, N., Minyan, L., Guanfang, H. U., Heping, L., & Farong, Y. (2016). Bioactivity Form Four Species of Plants Against Corn Weevil,Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Gansu Agricultural Science and Technology. Search in Google Scholar

B, M. H., Deepak, S. M., Siddarth, S., Anantharamanan, R., Shailaja, H., Guo-Liang, W., & Malali, G. (2016). Indica rice genome assembly, annotation and mining of blast disease resistance genes. BMC genomics, 17(1). Search in Google Scholar

Xu, H., Wei, Y., Zhu, Y., Lian, L., & Zhang, J. (2015). Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity. Plant Biotechnology Journal, 13(4), 526–539. Search in Google Scholar

Piétu, G., Mariage-Samson, R., Fayein, N. A., Matingou, C., & Auffray, C. (1999). The Genexpress IMAGE Knowledge base of human brain: a prototype of integrated resource for functional and computational Genomics. Genome Research, 9(2), 195. Search in Google Scholar

bo, X., Weiqiang, Z., feng, X., Chengye, W., Haishen, Z., Haitao, X.,.. jinhan, Z. (2014). Research progress on application of transcriptome sequencing technology in maize. journal of maize sciences, 22(01), 67–72+78. https://doi.org/10.13597/j.cnki.maize.science.2014.01.014. Search in Google Scholar

cheng, H. (2017). Application of Transcriptome Sequencing Data Analysis in Maize Kernel Functional Gene Mining. China Agricultural University. Search in Google Scholar

Schena, M. (1995). Quantitative monitoring of gene expression patters with a complementary DNA maicroarray. Science, 270. Search in Google Scholar

Ali, M., Williams, B. A., Kenneth, M. C., Lorian, S., & Barbara, W. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods, Vol 5, No.7, 2008, 621–628. Search in Google Scholar

Chaudhury, A. R., Iychettira, K. K., Iyer, R., & Sreedevi, A. (2011). Robust Image Processing Techniques for DNA Microarray Analysis. Digital Image Processing. Search in Google Scholar

Dowaidar, M. (2021). RNA sequencing and microarray analysis are helpful techniques to detect obesity-related lncRNAs. LncRNA can alter cholesterol metabolism and can be a target for gene therapy. Search in Google Scholar

Shi-JianZhang, ChenquWang, ShouyuYan, AisiFu, XukeLuan, YumeiLi,.. XiangfengWang. Isoform Evolution in Primates through Independent Combination of Alternative RNA Processing Events. Search in Google Scholar

Chen, Z., & Li, C. Analysis of differentially expressed genes at seedling stage of seeds at different storage temperatures by transcriptome sequencing. https://doi.org/10.13597/j.cnki.maize.science.20210606. Search in Google Scholar

Fang, Z. (2019). Review on the Time and Path of Maize Entering China —— Based on the Search of CNKI. Study on Min’s Business Culture(1), 4. Search in Google Scholar

Jiuran, Z., Wang, S., Ming, L., huiying, L., daowen, w., Yiqiang, G.,.. weicai, Y. (2018). Innovation Status and Development Trend of Maize Breeding Industry. journal of plant genetic resources, 19(03), 435–446. https://doi.org/10.13430/j.cnki.jpgr.2018.03.008. Search in Google Scholar

Fengyuan, L. (2018). Screening of Sweet maize Germplasm Resources with High Folic Acid and Its Product Development. South China University of Technology. Search in Google Scholar

Jie, C., Ren-Ke, T., Xiao-Juan, G., Zheng-Li, F., Zheng, W., Zhi-Yan, Z.,.. Maoteng, L. (2015). Transcriptome Analysis Comparison of Lipid Biosynthesis in the Leaves and Developing Seeds of Brassica napus. Plos One, 10(5), e0126250-. Search in Google Scholar

Jie, C., Xcl, C., & Lza, B. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa ) grains under stress of 2,2′,4,4′-tetrabromodiphenyl ether. Environment International, 133(PA), 105154–105154. Search in Google Scholar

Xing, L., Zhu, M., Min, Z., Li, W., Jiang, H., Zou, J.,.. Xu, M. (2017). High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development. Genes, 8(12), 385. Search in Google Scholar

Sudan. (2018). Transcriptomics Analysis of Storage Tolerance of Rice. Central South University of Forestry and Technology. Search in Google Scholar

Qin, W., Yang, C., Deng, J., Iqbal, N., Yang, F., Wang, X.,.. Liu, J. (2018). Transcriptome analysis of aging soybean seeds. Journal of Northeast Agricultural University. Search in Google Scholar

C, W. V., J, C. S., A, C.-P., X, Y. J., A, G. A., R, W. M.,.. I, H.-S. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 16(7). Search in Google Scholar

J, W., C, W. J., D, B., & G, S. (2004). Protein expression by Streptococcus mutans during initial stage of biofilm formation. Applied and environmental microbiology, 70(6). Search in Google Scholar

Wang, L., & Davis, J. (2000). China’s Grain Economy: The challenge of feeding more than a billion: China’s Grain Economy: The challenge of feeding more than a billion. Search in Google Scholar

zengchun, M., Takayuki, junping, L., & shengqi, W. (2004). Comparison of three detection methods of protein in two-dimensional electrophoresis. chinese journal of biochemistry molecular biology(04), 551–556. https://doi.org/10.13865/j.cnki.cjbmb.2004.04.029. Search in Google Scholar

Junjun, M. Application progress of bioinformatics in proteomics research _ Ma Junjun. Search in Google Scholar

Wang, H.-Z. Advances in proteomics of maize. Search in Google Scholar

Dafei, Y., Youli, W., Liqun, W., Yuqin, W., Xiaoyi, B., E., A. S., & Jianmin, Y. (2022). Insights into the proteomic profile of newly harvested maize and metagenomic analysis of the broiler intestinal microbiota. Journal of Animal Science and Biotechnology, 13(1). Search in Google Scholar

Koziol. <Proteomic Analysis of Starch Biosynthesis in Maize Seeds, Starch ‐ Stärke 71.pdf>. https://doi.org/10.1002/star.201800294. Search in Google Scholar

yuanyuan, l. (2011). Preliminary study on molecular mechanism of rice seed storage tolerance. University Of Agriculture and Forestry In Fujian. Search in Google Scholar

Gaojiadong. (2012). Physiological basis and proteinomics of hybrid rice seeds during storage. Agricultural University Of Hunan. Search in Google Scholar

Shuguo, S. Study on aging mechanism of rice under different storage conditions by protein-omics technology. https://doi.org/10.11975/j.issn.1002-6819.2017.18.036. Search in Google Scholar

Shuguo, S., Ruohui, W., Chun-lu, L., Chunyan, J., Yuqin, D., & Jianzhong, C. (2017). To study the aging mechanism of rice under different storage conditions by proteomics technology. Transactions of the Chinese Society of Agricultural Engineering(18). Search in Google Scholar

Yin, G., Xin, X., Fu, S., An, M., Wu, S., Chen, X.,.. Lu, X. (2017). Proteomic and Carbonylation Profile Analysis at the Critical Node of Seed Ageing in Oryza sativa. Scientific Reports, 7, 40611. Search in Google Scholar

B, Y. L. A., B, K. L., B, F. C., & A, Y. C. (2018). Comparative proteomics analysis reveals the effect of germination and selenium enrichment on the quality of brown rice during storage - ScienceDirect. Food Chemistry, 269, 220–227. Search in Google Scholar

Meiyu, X. Analysis of nutritional differences and storage characteristics of coix seed based onOmics. University Of Agriculture and Forestry In Fujian. Search in Google Scholar

Devaux, A. (1971). Study of resistance to mosaic virus (Cucumis virus 1) and other cucumber diseases. Recherches Agronomiques Quebec Canada. Search in Google Scholar

Marek, C., Oliber, N., Bartlomiej, F., & Zbigniew, K. (1997). Synthesis of Dioxolanylclavam from Tartaric Acid. HETEROCYCLES, 45(2). Search in Google Scholar

Tweeddale, Notley-McRobb, & Ferenci. (1998). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. Journal of Bacteriology. Search in Google Scholar

Zhang, J. G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J.,.. Hausmann, G. (1999). The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proceedings of the National Academy of ences of the United States of America, 96(5), 2071–2076. Search in Google Scholar

Paul, Tang, Joan, Ash, David, & Bates. (2006). Personal Health Records: Definitions, Benefits, and Strategies for Overcoming Barriers to Adoption. Journal of the American Medical Informatics Association Jamia. Search in Google Scholar

Yuan, D. L., Yi, L. Z., Zeng, Z. D., & Liang, Y. Z. (2010). Alternative moving window factor analysis (AMWFA) for resolution of embedded peaks in complex GC-MS dataset of metabonomics/ metabolomics study. Analytical Methods, 2(8), 1125–1133. Search in Google Scholar

Li, J., Ren, L., Sun, G., & Huang, H. (2013). Gas chromatography-mass spectrometry (GC-MS) and its application in metabonomics. Chinese Journal of Biological Engineering, 29(4), 434–446. Search in Google Scholar

Zhang, J. S., Hao, Y. U., Zhong, X., Zhang, G. R., & Liu, X. (2018). Comparison of Quality of Ophiocordyceps sinensis and Isaria cicadae Based on GC-MS Metabonomics. Chinese Journal of Experimental Traditional Medical Formulae. Search in Google Scholar

Bertram, H. C., Malmendal, A., Nielsen, N. C., Straadt, I. K., Larsen, T., Knudsen, K., & Lã¦Rke, H. (2010). NMR-based metabonomics reveals that plasma betaine increases upon intake of high-fiber rye buns in hypercholesterolemic pigs. Molecular Nutrition & Food Research, 53(8), 1055–1062. Search in Google Scholar

Bertram, H. C., Oksbjerg, N., & Young, J. F. (2010). NMR-based metabonomics reveals relationship between pre-slaughter exercise stress, the plasma metabolite profile at time of slaughter, and water-holding capacity in pigs. Meat Science, 84(1), 108–113. Search in Google Scholar

Wang, H., Su, G., Chen, G., Bai, J., & Pei, Y. (2015). 1H NMR-based metabonomics of the protective effect of Curcuma longa and curcumin on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. Journal of Functional Foods. Search in Google Scholar

Chen, H., Wang, M., Su, S. U., Cui, C., Guowei, L. U., & Xue, M. (2012). LC-MS based metabonomic investigations into the metabolic profile of acute repetitive hypoxia in mice. The 10th National Conference on Drug and Chemical Foreign Body Metabolism and the 3rd International ISSX/CSSX Joint Conference. Search in Google Scholar

Lu, X., Zhao, X., Bai, C., Zhao, C., Lu, G., & Xu, G. (2008). LC-MS-based metabonomics analysis (vol 866, pg 64, 2008). JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 874(1–2). Search in Google Scholar

Wilson, & I., D. (2012). Comprehensive Sampling and Sample Preparation || Sampling and Sample Preparation for LC-MS-Based Metabonomics/Metabolomics of Samples of Mammalian Origin. 339–357. Search in Google Scholar

Gika, H., Theodoridis, G., Wingate, J., & Wilson, I. Quality Control in LC-MS Metabonomics Analysis. Approaches, issues, guidelines. Search in Google Scholar

Wilson, I. D., A, F. M., & B, G. T. A. (2012). Sampling and Sample Preparation for LC-MS-Based Metabonomics/Metabolomics of Samples of Mammalian Origin. Comprehensive Sampling & Sample Preparation, 3, 339–357. Search in Google Scholar

Murray-Rust, P., Rzepa, H. S., Stewart, J. J. P., & Zhang, Y. (2005). A global resource for computational chemistry. Journal of Molecular Modeling, 11(6), 532. Search in Google Scholar

Guo, A. C., Timothy, J., Michael, W., Liu, Y., Craig, K., Yannick, D.,.. Wishart, D. S. (2013). ECMDB: The E. coli Metabolome Database. Nucleic Acids Research(D1), D625. Search in Google Scholar

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., & Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837. Search in Google Scholar

Guijas, C., & Siuzdak, G. (2018). Response to Comment on “METLIN: A Technology Platform for Identifying Knowns and Unknowns”. analytical chemistry. Search in Google Scholar

Heck, A. (2010). T.R. - Journal of Mass Spectrometry. Search in Google Scholar

Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E.,.. Stitt, M. (2005). GMD@CSB.DB. Bioinformatics. Search in Google Scholar

Sawada, Y., Nakabayashi, R., Yamada, Y., Suzuki, M., Sato, M., Sakata, A.,.. Aoki, T. (2012). RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database. Phytochemistry, 82(2), 38–45. Search in Google Scholar

Dawn, C., Andreia, M., Chittibabu, G., Brian, S., & Shankar, S. (2006). LMPD: LIPID MAPS proteome database. Nucleic Acids Research, 34(90001), D507–D510. Search in Google Scholar

MetaboLights: An Open‐Access Database Repository for Metabolomics Data. (2016). Current Protocols in Bioinformatics, 53(1). Search in Google Scholar

Kim, S., Chen, J., Cheng, T., Gindulyte, A., & Bolton, E. E. (2018). PubChem 2019 update: improved access to chemical data. Nucleic Acids Research, 47(Database issue). Search in Google Scholar

Wang, J., Peake, D. A., Mistrik, R., Huang, Y., Inc, T. F. S., Jose, S., & Bratislava. A Platform to Identify Endogenous Metabolites Using a Novel High Performance Orbitrap MS and the mzCloud Library. Search in Google Scholar

Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., & Fiehn, O. (2009). FiehnLib: Mass Spectral and Retention Index Libraries for Metabolomics Based on Quadrupole and Time-of-Flight Gas Chromatography/Mass Spectrometry. Analytical chemistry, 81(24), 10038–10048. Search in Google Scholar

Zhiwei, Z., Xiaotao, S., Xi, C., Jia, T., Xin, X., & Zheng-Jiang, Z. LipidIMMS Analyzer: Integrating multi-dimensional information to support lipid identification in ion mobility – mass spectrometry based lipidomics. Bioinformatics (4), 4. Search in Google Scholar

Martin, W. C., Wiese, W. L., Musgrove, A., Fuhr, J. R., Sugar, J., Reader, J.,.. Dalton, G. R. (2005). NIST atomic spectra database. Memorie Della Societa Astronomica Italiana Supplementi, 8(1), 96. Search in Google Scholar

Rumble, J. R., Bickham, D. M., & Powell, C. J. (2010). The NIST x‐ray photoelectron spectroscopy database. Surface and Interface Analysis, 19(1), 241–246. Search in Google Scholar

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., & Querengesser, L. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35(Database issue), D521–526. Search in Google Scholar

Mocanua, A., Cernicab, I., Tomoaiac, G., Bobosa, L. D., & Tomoaia-Cotisel, M. (2009). Colloids and Surfaces A: Physicochem. Search in Google Scholar

Gracia, M. I., Tinoco, M. M., Rivera, H. M., Sanchez, B. F., Tapia, P. G., Altamirano, L. M.,.. García, O. L. (2013). Acute Toxicity and Genotoxic Evaluation of Metlin and Metlos (Organic Agave Fructans). Food & Nutrition Sciences, 04(7A), 106–112. Search in Google Scholar

Domingo-Almenara, X., Guijas, C., Billings, E., Montenegro-Burke, J. R., Uritboonthai, W., Aisporna, A. E.,.. Siuzdak, G. (2019). The METLIN small molecule dataset for machine learning-based retention time prediction. Nat Commun(1). Search in Google Scholar

Chen, I. D. G. M. D. (2003). A meta-analysis of the efficacy of second-generation antipsychotics. Schizophrenia Research. Search in Google Scholar

Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., & Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50 Suppl(Supplement), S9–14. Search in Google Scholar

David, Z. J., & Stefan, W. (2009). KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics, 25(11), 1470–1471. Search in Google Scholar

Antonov, A. V., Schmidt, E. E., Sabine, D., Maria, K., & Henning, H. (2010). R spider: a network-based analysis of gene lists by combining signaling and metabolic pathways from Reactome and KEGG databases. Nucleic Acids Research(suppl_2), W78. Search in Google Scholar

Lizhiwen, yi, W., Bloomberg, & na, W. (2022). Study on sugar metabolism of fresh waxy maize during shelf life at room temperature. Preservation and processing, 22(06), 1–7. Search in Google Scholar

Mengyun, R., Dulonggang, meixing, W., & Yifeng, H. (2022). Characteristics of soluble sugar components and postharvest quality of waxy maize. Journal of Zhejiang Agriculture, 34(06), 1133–1140. https://kns.cnki.net/kcms/detail/33.1151.S.20220602.1928.048.html. Search in Google Scholar

Song, Eun-Hye, Hyun-Ju, Jeong, Jaesik, Chung,.. Eunjung. A H-1 HR-MAS NMR-Based Metabolomic Study for Metabolic Characterization of Rice Grain from Various Oryza sativa L. Cultivars. Search in Google Scholar

Yan, S., Huang, W., Gao, J., Fu, H., & Liu, J. (2018). Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiology & Biochemistry, 127, 590. Search in Google Scholar

Ravelet, C. (2015). Front. Chem. doi: 10.3389/fchem.2015.00049. Frontiers in Chemistry, 3(49). Search in Google Scholar

Xiaojie, W., Quyue, & Xiaolan, L. Study on nutritional characteristics of maize glycopeptide. journal of the chinese cereals and oils association, 1–11. https://kns.cnki.net/kcms/detail/11.2864.TS.20220610.1715.009.html. Search in Google Scholar

Scientists collaborate to build a multiomics database of regenerative biology. (2021). High technology and industrialization, 27(10), 73. Search in Google Scholar

Christian, C., Martin, M., Tobias, C., Anja, H., Urte, S., Nina, Z.,.. Uwe, S. (2012). OPTIMAS-DW: a comprehensiveTranscriptomics, Metabolomics, ionomics, Proteomics and phenomics data resource for maize. BMC plant biology, 12(1). Search in Google Scholar

Wang, X., Liu, H., Qiao, F., Zhang, R., Xiao, Y., Yang, W.,.. Yan, J. (2016). Development of a maize synthetic population and applications in quantitative traits dissection (C. S. o. C. Chinese Academy of Agricultural Sciences, Trans.). 7th International Crop Science Congress (p. 129). Beijing China. Search in Google Scholar

Songyu, L., Feng, X., yuetong, X., Qian, W., jun, Y., Jinyu, W.,.. Xiangfeng, W. (2022). Mining Maize Germplasm Resources with Multiomics Data Association Analysis Tool MODAS. Science Bulletin, 67(09), 903–906. Search in Google Scholar

Kyoungwon, C., Junko, S., Akihiro, K., Yoshihisa, K., Kouji, S., Shoshi, K.,.. Randeep, R. (2013). Genome-wide mapping of the ozone-responsive transcriptomes in rice panicle and seed tissues reveals novel insight into their regulatory events. Biotechnology letters, 35(4). Search in Google Scholar

wangyinchao. Protein-omics and its technical development. Search in Google Scholar

Peng, Y. C., Xinbo. (2020). Bioinformatics Analysis Reveals Functions of MicroRNAs in Rice Under the Drought Stress. Current Bioinformatics, 15(8). Search in Google Scholar

Pratap, A., Gupta, S., Nair, R., Gupta, S., Schafleitner, R., Basu, P.,.. Nayyar, H. (2019). Using Plant Phenomics to Exploit the Gains of Genomics. Agronomy, 9(3). Search in Google Scholar

Filippo, G., Maraeva, G., Alejandro, V. J. J., Cesar, S. C., & Costich, D. E. Seed longevity of maize conserved under germplasm bank conditions for up to 60 years. Annals of Botany. Search in Google Scholar

Galland, M., He, D., Lounifi, I., Arc, E., & Rajjou, L. (2017). An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. Frontiers in Plant Science, 8, 1984. Search in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics