Współczesny człowiek na każdym kroku styka się z mikroskopijnymi zarazkami, które często postrzegane są jako nasi „wrogowie”, kojarząc je głównie z mikroorganizmami o właściwościach patogennych. Lata badań nad nimi prowadzone przez mikrobiologów przyczyniły się do opracowania zabiegów profilaktycznych w postaci szczepionek zabezpieczających przed zainfekowaniem się nimi. Jednym z wielkich naukowców – mikrobiologów był Ludwik Pasteur, który opracował szczepionkę przeciw takim chorobom bakteryjnym jak wąglik, pastereloza drobiu, różyca świń, a przede wszystkim przeciw chorobie wirusowej, śmiertelnej dla człowieka, jaką jest wścieklizna. W dzisiejszej dobie oprócz już wielu opracowanych szczepionek, możemy sięgać po chemioterapeutyki i antybiotyki w celu likwidacji mikroorganizmów stanowiących grupę tzw.: „wrogów”. Nierzadko jednak czynimy tym sposobem więcej szkody, niż pożytku, gdyż ich eradykacja powoduje szkodliwe skutki wobec ludzkiego organizmu, bo wśród nich są mikroorganizmy egzystujące w symbiozie z organizmem człowieka [1, 29, 71]. Wynika i wiąże się to z faktem, że wiele społeczności mikroorganizmów od zarania dziejów to nasi „sojusznicy”, odpowiedzialni za niezliczoną ilość interakcji, zarówno pomiędzy ludzkim organizmem jak i pomiędzy sobą, przez co tworzą one “tarczę” ochronną, w powiązaniu z układem immunologicznym makroorganizmu [17, 79, 94]. Także ich wzajemne oddziaływania w tym na makroorganizm, układają się w dość zawiłą “mapę”, co powoduje, że mikroorganizmy oraz balans w proporcjach ich populacji, w sposób bardzo istotny wpływa na zachowanie homeostazy, w tym status odpornościowy organizmu [17, 41, 79, 87, 94]. Wykazano także, że oddziaływanie mikroorganizmów, warunkuje wiele stanów patologicznych m.in. choroby o podłożu immunologicznym, choroby metaboliczne, a nawet nowotworowe [1, 23, 40, 44, 71, 79, 92, 94, 102]. Stany te warunkowane są i tym, że więcej niż połowę komórek w organizmie człowieka stanowią mikroorganizmy przekraczające liczbę 100 trylionów, z czego większość kolonizuje przewód pokarmowy w postaci mikroorganizmów symbiotycznych i komensalnych [71, 102]. Właśnie bakterie symbiotyczne i komensalne zapewniają “ochronę” człowieka przed bakteriami chorobotwórczymi, stąd niszczenie ich stosując choćby chemioterapeutyki, powoduje wyjałowienie organizmu, co prowadzi do zachwiania w ich równowadze i dysbiozę [44]. Charakteryzując skład mikrobiomu należy dodać, że składa się on nie tylko ze „społeczności” mikroorganizmów symbiotycznych i komensalnych, ale także chorobotwórczych [66, 102]. Taki układ ekologiczny mikrobiomu u ssaków, w tym ludzi, jest bardzo dynamiczny, bo zmienia się w zależności od miejsca i trybu życia makroorganizmu, predyspozycji genetycznych, wieku, płci oraz diety, wliczając także stosowanie prebiotyków, probiotyków i ksenobiotyków [102, 114, 120]. Stąd przyjmuje się, że ssaki, w tym człowiek, wraz ze swoim mikrobiomem tworzą “superorganizm” [93].
Elementy składowe mikrobiomu przewodu pokarmowego człowieka
Przewód pokarmowy człowieka, który osiąga długość nawet do 7,6 metra, stanowi “dom” dla wielu różnorodnych mikroorganizmów [48]. Mikrobiom przewodu pokarmowego człowieka, tworzą bakterie, archeony, wirusy i grzyby, tworzące swoiste konsorcjum oddziaływujące wzajemnie na siebie, a które można przyrównać do “lasu deszczowego” [10, 102]. Dzieli się on na mikrobiom rdzeniowy – stały i mikrobiom zmienny [110]. Mikrobiom rdzeniowy tworzą dominujące gatunki mikroorganizmów, które znajdują się w różnych częściach zdrowego organizmu, uniwersalne dla większości populacji ludzkiej, natomiast mikrobiom zmienny będąc specyficzny dla danej osoby, ewoluuje w odpowiedzi m.in. na styl życia, miejsce zamieszkania czy jej dietę [110]. Efektem tego występujące w mikrobiomie rodzaje, gatunki i szczepy bakterii, archeonów, wirusów i grzybów, są specyficzne, odmienne i wyjątkowe dla danego osobnika, co można porównać do “odcisku palca” [28]. To konsorcjum mikroorganizmów w przewodzie pokarmowym pełni wiele istotnych funkcji m.in. tworzy ochronę przed patogenami, syntezuje witaminy i bierze udział w wytwarzaniu energii, przez co często określane jest jako “zapomniany organ” [17, 102].
Bakterie występujące i tworzące mikrobiom przewodu pokarmowego stanowią drugą po bakteriofagach największą grupę mikroorganizmów, bo zarejestrowano w jelitach ponad 1000 gatunków bakterii jelitowych, których liczba wciąż rośnie [102]. Dethlefsen i wsp.[28] przyjmują, że co najmniej 80% wszystkich gatunków bakterii w jelitach ludzkich jedynie identyfikować można metodami genetycznymi [64, 102, 110]. Niezależnie od tego faktu bakterie tworzące mikrobiom przewodu pokarmowego, zwiększają swoją liczbę także poprzez zdolność do spontanicznych mutacji i horyzontalnego transferu genów, przez co cechują się dynamiczną adaptacją do zmieniających się warunków, w tym nabywania oporności na działanie chemioterapeutyków [17]. Te jednokomórkowe mikroskopijne mikroorganizmy o tendencji do wszędobylskości i kolonizujące niemal każdy zakątek naszego organizmu, a także wiele środowisk naszego życia, cechują się dużą różnorodnością, choćby w zakresie wielkości. Otóż występująca w środowisku wodnym Thiomargarita namibiensis może osiągnąć 750 μm i być widoczna gołym okiem, za to Francisella tularensis kolonizująca organizm ssaków, w tym ludzki, ma jedynie 0,2 μm [104, 116, 117]. Pod względem morfologii bakterii można je podzielić na formy cylindryczne, kuliste, spiralne i nietypowe, zaś ze względu na metabolizm wyodrębnić można wśród nich, bakterie beztlenowe i tlenowe, zaś ze względu na grubość ich ściany komórkowej, bakterie Gram− i Gram+ [86]. Rozmnażanie bakterii zachodzi głownie na drodze bezpłciowej i odbywa się poprzez podział komórki bakteryjnej, z której powstają dwie identyczne komórki potomne [59, 112]. Opisano także u nich podział asymetryczny [83], rozmnażanie przez pączkowanie [55] oraz procesy parapłciowe – transdukcję [3, 121]. Tempo rozmnażania ich jest bardzo duże, bo potrafią w prawie każdym biotypie w dynamiczny sposób dostosowywać swój metabolizm do swoiście wydajnego wykorzystania wszystkich dostępnych składników odżywczych, nawet wbrew zmieniającym się warunkom [12].
Drugą grupą mikroorganizmów tworzących mikrobiom przewodu pokarmowego są archeony, których nazwa pochodzi od greckiego słowa „archaios” oznaczającego „prymitywny” lub „starożytny” [98]. Archeony to organizmy prokariotyczne, żyjące w warunkach termofilnych, ale także mające zdolność rozwoju i przetrwania nawet w warunkach ekstremalnych jak np. w podwodnych hydrotermalnych kominy [5, 37, 48, 63, 98]. Bytują one w warunkach mezofilnych w organizmach ssaków, w tym człowieka [5, 37, 48, 63, 98]. Archeony jako składowe mikrobiomu przewodu pokarmowego człowieka, badane były w mniejszym stopniu niż bakterie. Szacuje się, że w jelitach u ludzi archeony mogą stanowić do 21,1% wszystkich mikroorganizmów, przez co regulują i wpływają na mikrobiom tego biotopu [5, 7, 58, 81]. Większość z nich w ludzkim przewodzie pokarmowym to archeony metanogenne, cechujące się syntrofią bazującą na transporcie wodoru pomiędzy metanogennymi archeonami, a innymi rodzajami mikroorganizmów [58, 81]. Niektóre z nich metabolizują metan i redukują tym samym poziom wodoru, co stymuluje wzrost bakterii sacharolitycznych, choć także opisano archeony uczestniczące w metabolizmie węglowodanów [5, 113]. Archeony mogą być w pewnym stopniu powiązane z chorobami u ludzi [37]. Ich elementy procesów informacyjnych, bardziej przypominają eukariotyczne niż bakteryjne odpowiedniki, choć czasami są wspólne dla domeny Eukaryota i Prokaryota [42]. Cechują się one odmienną w stosunku do bakterii budową ściany komórkowej, w której brak peptydoglikanu, a ich błona posiada wiązania eterowe oraz występują u nich specyficzne enzymy i szlaki metaboliczne [33, 37, 54, 62, 81, 98]. Mają one wielkość od 0,1 μm do 15 μm i podobnie jak w przypadku bakterii, mogą przybierać kształt kulisty, cylindryczny i spiralny, choć także rejestruje się kształty nietypowe [33, 37, 116]. Brak u nich mitochondriów, aparatu Golgiego, retikulum endoplazmatycznego i lizosomów, zaś obecne u nich rybosomy, są zbliżone swoją strukturą do występujących u bakterii [33]. Rozmnażanie u archeonów podobnie jak u bakterii odbywa się drogą bezpłciową przez podział komórkowy, bądź poprzez pączkowanie [32]. Ich struktura genetyczna, a także ich szlaki transkrypcyjne i translacyjne, są bardziej podobne do domeny Eucaryota [5, 62].
Trzecią grupą zarazków, które tworzą mikrobiom przewodu pokarmowego ssaków, w tym człowieka są wirusy, które nie posiadają struktury komórkowej z organellami i układem metabolicznym [13]. Ich nazwa pochodzi od łacińskiego słowa vīrus oznaczającego truciznę/śluz, bądź jad [39]. Wirusy są najliczniejszymi jednostkami biologicznymi na Ziemi i wszechobecnymi pasożytami form życia komórkowego, w tym w przewodzie pokarmowym [100]. Ich wielkość może się wahać od rozmiaru około 18–26 nm u parwowirusów, do 250 nm – 2000 nm u wirusów olbrzymich [19, 27, 62, 90]. Wirusy zbudowane są z kapsydu o symetrii helikalnej lub kubicznej z zamkniętym w środku kwasem nukleinowym w postaci DNA lub RNA, będącym kodem genetycznym, który służy do replikacji wirusów [100]. Wirusy, podobnie jak bakterie, mutują, ale także ewoluują i adaptują się do układu odpornościowego gospodarza, co pozwala im kolonizować i infekować wiele makroorganizmów, w tym nie tylko ssaków ale także rośliny, bakterie, archeony oraz wirusy olbrzymie np. wirusy z rodziny – np. Mimiviridae, infekujące m.in. pierwotniaki występujące w ludzkich jelitach [15, 19, 27, 60, 65, 100]. W tej części przewodu pokarmowego człowieka (jelitach) zidentyfikowano ponad 140 000 gatunków wirusów, z których większość stanowią bakteriofagi [13], a których jest co najmniej dziesięciokrotnie więcej niż bakterii [13, 76, 99]. Laceuit i wsp. [65] wykazali że w treści jelit człowieka bez określenia w którym odcinku, zarejestrowano wirusy ssacze rodziny Picornaviridae (rodzaj Enterovirus, Parechovirus, Cardiovirus i Salivirus), Picobirnaviridae (rodzaj Picobirnavirus), Astroviridae (rodzaj Astrovirus), Reoviridae (rodzaj Rotavirus), Caliciviridae (rodzaj Norovirus, Sapovirus), Adenoviridae (rodzaj Mastadenovirus C and F i inne), Anelloviridae (rodzaj Anellovirus), Cycloviridae (Circovirus, Cyclovirus) i Parvoviridae (Bocavirus). Inne badania [7] wykazały w jamie ustnej, nosie, płynie gardłowym i ślinie, że zawartość wirusów waha się od 109 cząstek na gram do 108 na mililitr i są to głównie bakteriofagi. W płytce nazębnej stwierdzono 1010 cząsteczek wirusowych na miligram płytki [68, 74, 108].
Następną grupę mikroorganizmów tworzących mikrobiom przewodu pokarmowego człowieka stanowią grzyby, które są organizmami eukariotycznymi i heterotroficznymi, a ich populację określa się jako mykobiom [86]. Cechą charakterystyczną grzybów jest tworzenie sieci rozgałęzionych kanalikowych komórek, które tworzą grzybnię oraz występowanie w ich ścianie komórkowej ergosterolu jako substancji przypominającej cholesterol błon komórkowych ssaków oraz chitynę (30, 78, 97). Grzyby tworzą także mikroskopijne, odporne na czynniki zewnętrzne, zarodniki o wielkości od 3 do 30 mikronów, służące do ich rozprzestrzeniania i pełniące rolę propaguli, cechujące się dużą różnorodnością kształtów oraz pigmentacją [30, 78, 97]. Rozmnażanie grzybów może być bezpłciowe i zachodzi przez fragmentację grzybni, bądź poprzez wytwarzanie zarodników lub na drodze blastokonidiogenezy zwanej potocznie pączkowaniem oraz płciowe odbywające się poprzez zlewanie się ze sobą różnoimiennych strzępek grzybni [78]. Mykobiom ludzkiego przewodu pokarmowego i w stosunku do bakteriomu stanowi tylko około 0,03–2% mikroorganizmów, stąd określa się go jako “rzadką biosferę” w ludzkim mikrobiomie [73, 109]. Niemniej jednak, wpływa on na homeostazę makroorganizmu [36, 111], mimo że charakteryzuje się mniejszym zróżnicowaniem w stosunku do bakterii i wirusów [109]. Komórki grzybów ze względu na to, że są około 100 razy większe niż komórki bakteryjne, mimo mniejszej ich ilości, stwarzają stosunkowo dużą biomasę [73, 80].
Mikroorganizmy przewodu pokarmowego człowieka
Mikrobiom przewodu pokarmowego człowieka, to jest jamy ustnej, gardła, przełyku, żołądka, jelita cienkiego i grubego, tworzy swoisty jakościowo-ilościowy bogaty i zróżnicowany, swoisty ekosystem [96]. Jest on nadal ciągle poznawany i wzbogacany wiadomościami z zakresu jego nowych “elementów” w wyniku stosowania metod bioinformatycznych, molekularnych oraz sekwencjonowania metagenomowego, które to metody umożliwiają lepszą jego analizę [1, 17, 61, 102, 110].
Bakterie, archeony, wirusy i grzyby występujące w jamie ustnej
Jama ustna stanowi początek przewodu pokarmowego człowieka i jest ona bogata w mikroorganizmy (tab. I), gdyż stwierdzono w niej m.in. ponad 700 gatunków bakterii, czemu sprzyja stała jej wilgotność dzięki gruczołom wydzielającym ślinę o pH 6,5–7,0 oraz temperaturze około 37°C [50]. Jama ustna jako odcinek przewodu pokarmowego, „składa” się z warstwy skóry pokrytej nabłonkiem wielowarstwowym płaskim nierogowaciejącym, warg, języka, podniebienia i zębów co tworzy zróżnicowany biotop warunkowany odmiennymi warunkami dla społeczności drobnoustrojów [50]. Wskazuje się, że ze względu na spełnianie odpowiednich wymogów dla mikroorganizmów, środowisko jamy ustnej jest drugim wymieninaym pod względem obfitości odcinkiem przewodu pokarmowego po jelitach [1]. Wpływa na to także fakt, że organizm noworodka ssaka jest kolonizowany przez mikroorganizmy z dróg rodnych matki podczas porodu naturalnego [23]. Dodać należy, że pomimo iż większość drobnoustrojów jelitowych początkowo dostaje się do organizmu człowieka przez jamę ustną, biotop jamy ustnej i jelit, dzieli wiele typowych dla siebie mikroorganizmów [50]. Bakterie obecne w jamie ustnej człowieka tworzą tzw. biofilm oralny, czyli ustrukturyzowaną społeczność komórek bakteryjnych (tab. I), wśród których pierwszymi są m.in. bakterie z gatunku Streptococcus [92]. Kompozycja bakterii w biofilmie oralnym różni się jak wspomniano w zależności od lokalizacji, jako że bakterie, np. występujące na płytce nazębnej, różnią się od tych, które znajdują się na grzbiecie języka [108]. W jamie ustnej najczęściej występującymi bakteriami są Streptococcus sp., które występują w 65% na błonie śluzowej, w 66% na zrogowaciałej części dziąseł i w 40% na powierzchni podniebienia twardego [14]. W tej części przewodu pokarmowego stwierdza się aż ponad 65% filotypów bakterii, w tym typowych dla biotopu w żołądku [84]. Natomiast mikrobiom śliny zawiera 51% Proteobacteria i 9% bakterii z gromady Bacteroidota [38], choć wg Jebba i wsp. [53] dominującymi gatunkami bakterii w ślinie są Neisseria perflava i Rothia mucilaginosa. W ślinie w tym biotopie wykryto także bakterie typowe dla mikrobiomu skóry, należące do rodziny: Staphylococcaceae, Propionibacteriaceae, Burkholderiaceae, Neisseriaceae i Fusobacteriaceae [72], a na zębach bakterie Gram-dodatnie takie jak, np: Actinomyces sp., Streptococcus (S.) sanguinis, S. mutans i S. oralis [22]. Jamę ustną kolonizują także bogate populacje archeonów, wirusów i grzybów (tab. I). W składzie mikrobiomu jamy ustnej stwierdza się w największej ilości bakterie, ale także bogato reprezentowane są wirusy, archeony i grzyby (tab. I).
Bakterie, archeony, wirusy i grzyby, reprezentujące różne grupy systematyczne występujące w jamie ustnej
Rząd:Caudovirales.Rodzina:Herpesviridae, Papillomaviridae, Anelloviridae, Siphoviridae, Myoviridae.Gatunek: bakteriofagi dla bakterii z rodzaju Streptococcus, Veillonella, Escherichia, Bulkholderia, Salmonella, Megasphaer, Roseolovirus oraz wirusy: Human cytomegalovirus, Herpes simplex virus, Coxsackievirus A5, Enterovirus A, wirus Epstein-Barr.
Ten odcinek przewodu pokarmowego człowieka dzieli się na trzy to jest: nosowy, ustny i krtaniowy i stanowi połączenie dwóch układów, oddechowego i pokarmowego, w którym stwierdzono, że największą populację wśród mikroorganizmów stanowią bakterie (tab. II) głównie z gromady Bacteroidota (27%), które występują o wiele liczniej, niż w innych odcinkach przewodu pokarmowego [38]. Badania metagenomiczne mikrobioty nosogardzieli wykazały, że jest obfita także w wirusy DNA i RNA oraz bakteriofagi (tab. I). Nie stwierdzono w tym biotopie obecności archeonów [86]. Skromne są też informacje dotyczące populacji grzybów, bo stwierdzono jedynie grzyby z rodzaju Candida (tab. II).
Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w gardle
Bakterie, archeony, wirusy i grzyby występujące w przełyku
W tym odcinku przewodu pokarmowego tak jak w gardle, stwierdza się bakterie, wirusy i grzyby i archeony (tab. III). Stosunek ilościowy bakterii gatunku Streptococcus sp. do Prevotella sp. w tym biotopie, jest ważną cechą definiującą do jakiego typu społeczności mikroorganizmów kwalifikuje się przełyk danej osoby [27, 69]. U ludzi zdrowych w przełyku dominują bakterie Gram-dodatnie, w tym z gromady Firmicutes oraz bakterie z rodzaju Streptococcus [27, 69]. Przyjmuje się, że u osób chorych przeważają bakterie Gram-ujemne, bo ich ilość wynosi ponad 50%, wśród których najwięcej jest bakterii rodzaju Veillonella, Prevotella, Haemophilus, Neisseria, Granulicatella oraz Fusobacterium i ich liczba koreluje dodatkowo z zapaleniem przełyku i przełykiem Barretta [27, 69]. Analizując mikrobiom tego odcinka przewodu pokarmowego należy stwierdzić że bakteriei wirusy stanowią największą liczbę, zaś grzyby i archeony są reprezentowane nielicznie. (tab. III).
Bakterie, archeony, grzyby i wirusy reprezentujące różne grupy systematyczne występujące w przełyku
Żołądek, w porównaniu z jelitami, jest stosunkowo dość ubogi w mikroorganizmy, co wynika z bardzo niskiego pH w tym biotopie i występującym kwasem solnym, który jest w stanie wyeliminować większość gatunków zarazków [22] (tab. IV). Niektóre mikroorganizmy są w stanie przetrwać warunki, w których pH waha się w granicach 1–3 [17, 84]. Uważa się, że liczba mikroorganizmów żołądka waha się od 102 do 104 CFU/g [51] i najliczniej reprezentują ją bakterie należące do 5 gromad, 1 rodziny, 23 rodzajów oraz 6 gatunków bakterii (tab. IV). Drugą pod względem liczby najliczniejszą grupę mikroorganizmów w żołądku tworzą grzyby, które reprezentują 7 gromad, 4 rodziny, 5 rodzajów i 3 gatunki (tab. IV). W tym biotopie ale tylko u nowo narodzonych dzieci, stwierdza się archeony z gatunku Methanobrevibacter smithii [43]. Nie opisano występowania w żołądku wirusów (tab. IV).
Bakterie, archeony i grzyby reprezentujące różne grupy systematyczne występujące w żołądku
Bakterie, wirusy i grzyby występujące w jelicie cienkim
Ten odcinek przewodu pokarmowego człowieka stanowi jego najdłuższą część która wynosi od 3 do 5 metrów i składa się z dwunastnicy, jelita czczego i jelita krętego [18, 48]. Wśród mikroorganizmów tego odcinka są bardzo licznie reprezentowane bakterie oraz bardzo mało stwierdzono wirusów i grzybów (tab. V). Szczególnie w tym odcinku przewodu pokarmowego funkcje mikroorganizmów są powiązane z układem odpornościowym, ponieważ „zamieszkujące” go zarazki oddziaływają bardzo istotnie na układ odpornościowy – GALT (gut-associated lymphoid tissue) w tym MALT (mucosal associated lymhpoid tissue). Nadto biorą one udział w regulacji procesów komórek nabłonkowych jelit, ochronie przed działaniem szkodliwych mikroorganizmów oraz są czynnikami usposabiającymi w adaptacji gospodarza do zmian lipidowych wywodzącymi się z diety, a także oddziaływują na wchłaniania i trawienie [48, 75]. Ich liczna obecność w tym biotopie warunkowana jest tym, że gruczoły umiejscowione w śluzówce jelit, wydzielają zasadowy śluz, a gruczoły wewnętrznego wydzielania sok jelitowy co sprawia, że m.in. pH tego odcinka przewodu pokarmowego tworzy odpowiednie warunki bytowania dla tych mikroorganizmów [17]. Także wydzielana przez wątrobę do dwunastnicy żółć i zawarte w niej kwasy żółciowe oddziałują pozytywnie na tą mikroflorę [18, 95, 96]. Wśród bytujących w jelitach cienkich mikroorganizmów, głównymi zarazkami kolonizującymi ten biotop, tuż po urodzeniu, są bakterie, choć w okresie 1–4 miesięcy życia pojawiają się także wirusy [85]. Wykazano, że jelita człowieka mające 200–300 m2 błony śluzowej, stanowią „tajemniczy ogród” około dziesięciu milionów różnorodnych mikroorganizmów symbiotycznych [1, 71, 114]. Bogactwo mikroorganizmów występujących w jelicie cienkim (tab. V) jest uzależnione m.in. od takich czynników, jak rodzaj spożywanego pokarmu czy też warunków życia, w tym przyjmowanie chemioterapeutyków [88]. Wśród bakterii w jelicie cienkim występują głównie bakterie z gromady Firmicutes, Proteobacteria i Verrucomicrobia, zaś w dwunastnicy bakterie z gromady Firmicutes wynoszą 55%, a z gromady Proteobacteria 21% wszystkich mikroorganizmów [75, 107]. W jelitach oprócz tych trzech gromad bakterii i innych bakterii zarejestrowano także bakterie reprezentując wiele rodzajówi gatunków, a także wykazano występowanie 4 rodzajów wirusów i 2 rodzajów grzybów ale nie opisano występowania archeonów (tab. V).
Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie cienkim
Bakterie, archeony, wirusy i grzyby występujące w jelicie grubym
Ten odcinek przewodu pokarmowego – jelito grube jest najbogatszy w stosunku do zasobów mikroorganizmów bytujących w innych odcinkach przewodu pokarmowego i największą liczbę rejestruje się w kątnicy, okrężnicy, wyrostku robaczkowym i odbytnicy [56, 94] i ich różnorodność jest całkiem odmienna w stosunku do jelita cienkiego [75] (tab. VI). Mikroorganizmy tego odcinka przewodu pokarmowego, cechują się ogromną różnorodnością i stanowią aż 0,15 kg biomasy jelita grubego [20] (tab. VI). Mikrobiom tego odcinka warunkuje reakcję rozkładu i fermentacji cukrów, uczestniczy we wchłanianiu niestrawionych resztek pokarmowych, a także zarazki te są w stanie syntezować witaminy i dzięki temu można ten odcinek przewodu pokarmowego, przyrównać do swoistego bioreaktora [50, 56, 71, 82]. Reakcje w tym odcinku powodują także, że spada stężenie tlenu, a nawetilości związków przeciwdrobnoustrojowych, co prowadzi do zwiększonej różnorodności mikroorganizmów, stąd wskazuje się, że występuje w tym biotopie z około 100 bilionów drobnoustrojów [71, 102, 103]. Większość z nich to beztlenowce, bo ich pokarmem, czyli głównym źródłem węgla jest błonnik, który za pomocą tych drobnoustrojów ulega procesowi fermentacji [70]. Ze względu na rodzaj spożywanego pokarmu wyróżnia się trzy enterotypy jelita grubego (tab. VII).
Bakterie, archeony, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie grubym
W mikrobiomie jelita grubego stwierdza się także liczne gatunki archeonów, które w przeciwieństwie do bakterii, grzybów i wirusów są specyficzne tylko dla tej niszy (tab. VI). Tę bogatą mikroflorę jelita grubego reprezentuje 5 gromad, 6 rodzin, 15 rodzajów bakterii i 2 gromady i 11 gatunków archeonów, a także wirusy należące do 1 rzędu, 15 rodzin w tym przedstawicieli rodziny wirusów olbrzymich (Microviridae), 7 rodzajów i 3 gatunki bakteriofagów (tab. VI). Podaje się także, że gram treści jelita grubego może zawierać nawet 108–109 wirusowych cząsteczek, z których większość to bakteriofagi z rodziny Podoviridae [115]. Grzyby w tym biotopie są bardzo licznie reprezentowane i pochodzą z 3 gromad, 1 rodziny, 13 rodzajów i 13 gatunków i które stanowią tylko 0,1% wszystkich drobnoustrojów w całych jelitach.
Podsumowanie
Mikrobiom przewodu pokarmowego człowieka pod względem jego elementów składowych (bakterii, archeonów, wirusów i grzybów) w jego poszczególnych odcinkach jest bardzo zróżnicowany. Najliczniej reprezentowaną jego składową są bakterie, a najuboższą zarówno w kontekście ilościowym i jakościowym archeony. Wirusy reprezentowane są w tym biotopie w ilościach pośrednich między bakteriami, a grzybami. Natomiast rozpatrując ich ilości w poszczególnych odcinkach przewodu pokarmowego, najbardziej obfitym w gatunki mikrobiomem jest środowisko jelita grubego i jamy ustnej, a najuboższym gardło i przełyk (tab. I–VII). Wśród mikrobiomu przewodu pokarmowego bakterie występują we wszystkich jego odcinkach, z tym że reprezentowane najliczniej są w jamie ustnej i jelicie cienkim, zaś najmniej w gardle i przełyku, natomiast archeony najliczniej zostały opisane w jelicie grubym i jamie ustnej, a nie stwierdzono ich w gardle i w jelicie cienkim. W przypadku wirusów stwierdza się, że najliczniej reprezentują one odcinek jelicie grubego oraz jamę ustną, a nie stwierdzono ich w żołądku, natomiast grzyby są najobficiej stwierdzane w jelicie grubym i żołądku, a najmniej w gardle i jelicie cienkim.
Rząd:Caudovirales.Rodzina:Herpesviridae, Papillomaviridae, Anelloviridae, Siphoviridae, Myoviridae.Gatunek: bakteriofagi dla bakterii z rodzaju Streptococcus, Veillonella, Escherichia, Bulkholderia, Salmonella, Megasphaer, Roseolovirus oraz wirusy: Human cytomegalovirus, Herpes simplex virus, Coxsackievirus A5, Enterovirus A, wirus Epstein-Barr.
Adak A., Khan M.R.: An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci.76, 473–493, doi: 10.1007/s00018-018-2943-4 (2019)AdakA.KhanM.R.An insight into gut microbiota and its functionalitiesCell. Mol. Life Sci.7647349310.1007/s00018-018-2943-4201930317530Open DOISearch in Google Scholar
Andrews J.H.: Comparative Ecology of Microorganisms and Macroorganisms – Second Edition. Springer, New York, doi: https://doi.org/10.1007/978-1-4939-6897-8 (2017)AndrewsJ.H.Comparative Ecology of Microorganisms and MacroorganismsSecond EditionSpringerNew Yorkdoi: https://doi.org/10.1007/978-1-4939-6897-8201710.1007/978-1-4939-6897-8Search in Google Scholar
Anon.: Bacterial Transduction. https://bio.libretexts.org/@go/page/9298 (2021)AnonBacterial Transductionhttps://bio.libretexts.org/@go/page/92982021Search in Google Scholar
Azzouz L.L., Sharma S.: Physiology, Large Intestine. StatPearls Publishinghttps://pubmed.ncbi.nlm.nih.gov/29939634/ (2018)AzzouzL.L.SharmaS.Physiology, Large IntestineStatPearls Publishinghttps://pubmed.ncbi.nlm.nih.gov/29939634/2018Search in Google Scholar
Baker B.J., De Anda V., Seitz K.W., Dombrowski N., Santoro A.E., Lloyd K.G.: Diversity, ecology and evolution of Archaea. Nat Microbiol.5, 887–900, doi: 10.1038/s41564-020-0715-z (2020)BakerB.J.De AndaV.SeitzK.W.DombrowskiN.SantoroA.E.LloydK.G.Diversity, ecology and evolution of ArchaeaNat Microbiol.588790010.1038/s41564-020-0715-z202032367054Open DOISearch in Google Scholar
Bandara H.M.H.N., Panduwawala C.P., Samaranayake L.P.: Biodiversity of the human oral mycobiome in health and disease. Oral Dis.25, 363–371, doi: 10.1111/odi.12899 (2019)BandaraH.M.H.N.PanduwawalaC.P.SamaranayakeL.P.Biodiversity of the human oral mycobiome in health and diseaseOral Dis.2536337110.1111/odi.12899201929786923Open DOISearch in Google Scholar
Barrera-Vázquez O., Gomez-Verjan J.: The Unexplored World of Human Virome, Mycobiome, and Archaeome in Aging. The J. of Gerontology.75, doi: 10.1093/gerona/glz274 (2019)Barrera-VázquezO.Gomez-VerjanJ.The Unexplored World of Human Virome, Mycobiome, and Archaeome in AgingThe J. of Gerontology.7510.1093/gerona/glz274201931802114Open DOISearch in Google Scholar
Belmok A., de Cena J. A., Kyaw C. M., Damé-Teixeira N.: The Oral Archaeome: A Scoping Review. J Dent Res.99, 630–643, doi: 10.1177/0022034520910435 (2020)BelmokA.de CenaJ. A.KyawC. M.Damé-TeixeiraN.The Oral Archaeome: A Scoping ReviewJ Dent Res.9963064310.1177/0022034520910435202032167855Open DOISearch in Google Scholar
Bishop R.F., Kirkwood C.D.: Enteric Viruses. Encyclopedia of Virology.: 116–123, Elsevier, USA, doi: 10.1016/B978-012374410-4.00386-1, (2008)BishopR.F.KirkwoodC.D.Enteric Viruses. Encyclopedia of Virology.116123ElsevierUSA10.1016/B978-012374410-4.00386-12008Open DOISearch in Google Scholar
Bjorksten B.: The gut microbiota: a complex ecosystem. Clinical and Experimental Allergy.36, 1215–1217, doi: 10.1111/j.1365-2222.2006.02579.x (2006)BjorkstenB.The gut microbiota: a complex ecosystemClinical and Experimental Allergy.361215121710.1111/j.1365-2222.2006.02579.x200617014427Open DOISearch in Google Scholar
Booijink C.C., Zoetendal E.G., Kleerebezem M., de Vos W.M.: Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol.2, 285–295, doi: 10.2217/17460913.2.3.285 (2007)BooijinkC.C.ZoetendalE.G.KleerebezemM.de VosW.M.Microbial communities in the human small intestine: coupling diversity to metagenomicsFuture Microbiol.228529510.2217/17460913.2.3.285200717661703Open DOISearch in Google Scholar
Bosdriesz E., Molenaar D., Teusink B., Bruggeman F.J.: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J.282, 2029–2044, doi: 10.1111/febs.13258 (2015)BosdrieszE.MolenaarD.TeusinkB.BruggemanF.J.How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximizationFEBS J.2822029204410.1111/febs.132582015467270725754869Open DOISearch in Google Scholar
Camarillo-Guerrero L.F., Almeida A., Rangel-Pineros G., Finn R.D., Lawley T.D.: Massive expansion of human gut bacteriophage diversity. Cell.184, 1098–1109, doi: 10.1016/j.cell.2021.01.029 (2021)Camarillo-GuerreroL.F.AlmeidaA.Rangel-PinerosG.FinnR.D.LawleyT.D.Massive expansion of human gut bacteriophage diversityCell.1841098110910.1016/j.cell.2021.01.0292021789589733606979Open DOISearch in Google Scholar
Caselli E., Fabbri C., D’Accolti M., Soffritti I., Bassi C., Mazzacane S., Franchi M.: Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 20, doi: 10.1186/s12866-020-01801-y (2020)CaselliE.FabbriC.D’AccoltiM.SoffrittiI.BassiC.MazzacaneS.FranchiM.Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy pictureBMC Microbiol2010.1186/s12866-020-01801-y2020723636032423437Open DOISearch in Google Scholar
Chabé M., Lokmer A., Ségurel L.: Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol.33, 925–934, doi: 10.1016/j.pt.2017.08.005 (2017).ChabéM.LokmerA.SégurelL.Gut Protozoa: Friends or Foes of the Human Gut Microbiota?Trends Parasitol.3392593410.1016/j.pt.2017.08.005201728870496Open DOISearch in Google Scholar
Chin V.K., Yong V.C., Chong P.P., Amin Nordin S., Basir R., Abdullah M.: Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm. doi: 10.1155/2020/9560684 (2020)ChinV.K.YongV.C.ChongP.P.Amin NordinS.BasirR.AbdullahM.Mycobiome in the Gut: A Multiperspective ReviewMediators Inflamm.10.1155/2020/95606842020716071732322167Open DOISearch in Google Scholar
Clarke G., Sandhu K.V., Griffin B.T., Dinan T.G., Cryan J.F., Hyland N.P.: Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol. Rev.71, 198–224, doi: 10.1124/pr.118.015768 (2019)ClarkeG.SandhuK.V.GriffinB.T.DinanT.G.CryanJ.F.HylandN.P.Gut Reactions: Breaking Down Xenobiotic-Microbiome InteractionsPharmacol. Rev.7119822410.1124/pr.118.015768201930890566Open DOISearch in Google Scholar
Collins J.T., Nguyen A., Badireddy M.: Anatomy, Abdomen and Pelvis, Small Intestine. StatPearls Publishing, Treasue Island. (2021)CollinsJ.T.NguyenA.BadireddyM.Anatomy, Abdomen and Pelvis, Small IntestineStatPearls PublishingTreasue Island2021Search in Google Scholar
Colson P., Aherfi S., la Scola B.: Evidence of giant viruses of amoebae in the human gut. Human Microbiome J. 5–6, doi: 10.1016/j.humic.2017.11.001 (2017)ColsonP.AherfiS.la ScolaB.Evidence of giant viruses of amoebae in the human gutHuman Microbiome J.5610.1016/j.humic.2017.11.0012017Open DOISearch in Google Scholar
Costea P.I., Hildebrand F., Arumugam M.: Enterotypes in the landscape of gut microbial community composition. Nat Microbiol.3, 8–16, doi: 10.1038/s41564-017-0072-8 (2018)CosteaP.I.HildebrandF.ArumugamM.Enterotypes in the landscape of gut microbial community compositionNat Microbiol.381610.1038/s41564-017-0072-82018583204429255284Open DOISearch in Google Scholar
Cotter Paul D.: Small intestine and microbiota. Current Opinion in Gastroenterology. 27, 99–10, doi: 10.1097/MOG.0b013e328341dc67 (2011)Cotter PaulD.Small intestine and microbiotaCurrent Opinion in Gastroenterology27991010.1097/MOG.0b013e328341dc67201121102323Open DOISearch in Google Scholar
Coutts, A. M.: Review and discussion of the body’s normal microorganisms. Br. J. of Nursing.15, 864–868, doi: 10.12968/bjon.2006.15.16.21850 (2006)CouttsA. M.Review and discussion of the body’s normal microorganismsBr. J. of Nursing.1586486810.12968/bjon.2006.15.16.21850200617108857Open DOISearch in Google Scholar
Cugini C., Ramasubbu N., Tsiagbe V.K., Fine D.H.: Dysbiosis From a Microbal and Host Perspective Realtive to Oral Health and Disease. Front Microbiol.12, 1–23, doi. 10.3389/fmicb.2021.617485 (2021)CuginiC.RamasubbuN.TsiagbeV.K.FineD.H.Dysbiosis From a Microbal and Host Perspective Realtive to Oral Health and DiseaseFront Microbiol.1212310.3389/fmicb.2021.6174852021798284433763040Open DOISearch in Google Scholar
Cui L., Morris A., Ghedin E.: The human mycobiome in health and disease. Genome Med.5, 63, doi: 10.1186/gm467 (2013)CuiL.MorrisA.GhedinE.The human mycobiome in health and diseaseGenome Med.56310.1186/gm4672013397842223899327Open DOISearch in Google Scholar
D’A. F. Salvatore: The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta.7, 97–102, doi: 10.1016/j.cca.2015.01.003 (2015)SalvatoreD’A. F.The role of the gut microbiome in the healthy adult statusClin. Chim. Acta.79710210.1016/j.cca.2015.01.003201525584460Open DOISearch in Google Scholar
Demonfort Nkamga V., Henrissat B., Drancourt M.: Archaea: Essential inhabitants of the human digestive microbiota. Human Microbiome Journal.3, 1–8, doi: 10.1016/j.humic.2016.11.005 (2017)Demonfort NkamgaV.HenrissatB.DrancourtM.Archaea: Essential inhabitants of the human digestive microbiotaHuman Microbiome Journal.31810.1016/j.humic.2016.11.0052017Open DOISearch in Google Scholar
Deshpande N.P., Riordan S.M., Castaño-Rodríguez N., Wilkins M.R., Kaakoush N.O.: Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome.6, doi: 10.1186/s40168-018-0611-4 (2018)DeshpandeN.P.RiordanS.M.Castaño-RodríguezN.WilkinsM.R.KaakoushN.O.Signatures within the esophageal microbiome are associated with host genetics, age, and diseaseMicrobiome.610.1186/s40168-018-0611-42018629796130558669Open DOISearch in Google Scholar
Dethlefsen L., McFall-Ngai M., Relman D.A.: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature.449, 811–818, doi: 10.1038/nature06245 (2007)DethlefsenL.McFall-NgaiM.RelmanD.A.An ecological and evolutionary perspective on human-microbe mutualism and diseaseNature.44981181810.1038/nature062452007946403317943117Open DOISearch in Google Scholar
Dethlefsen L., Relman DA.: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1000087107 (2011)DethlefsenL.RelmanDA.Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbationProc Natl Acad Sci USA10.1073/pnas.10000871072011306358220847294Open DOISearch in Google Scholar
Dijksterhuis J.: Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol.81, 2–11, doi: 10.1016/j.fm.2018.11.006 (2019)DijksterhuisJ.Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilageFood Microbiol.8121110.1016/j.fm.2018.11.006201930910084Open DOISearch in Google Scholar
Duerkop B., Hooper L.: Resident viruses and their interactions with the immune system. Nat Immunol 14, 654–659, doi: 10.1038/ni.2614 (2013)DuerkopB.HooperL.Resident viruses and their interactions with the immune systemNat Immunol1465465910.1038/ni.26142013376023623778792Open DOISearch in Google Scholar
Efenberger M, Brzezińska-Błaszczyk E, Wódz K.: Archeony – drobnoustroje ciągle nieznane. Postepy Hig Med Dosw.68, 1452–1463, doi: 10.5604/17322693.113169 (2014)EfenbergerMBrzezińska-BłaszczykEWódzK.Archeony – drobnoustroje ciągle nieznanePostepy Hig Med Dosw.681452146310.5604/17322693.1131692014Open DOISearch in Google Scholar
Efenberger M., Wódz K., Brzezińska-Błaszczyk E.: Archeony – istotny składnik mikrobiomu człowieka. Przegl. Lek.71, 346–351 (2014)EfenbergerM.WódzK.Brzezińska-BłaszczykE.Archeony – istotny składnik mikrobiomu człowiekaPrzegl. Lek.713463512014Search in Google Scholar
Fenner F., Bachmann P.A., Gibbs E.P.J., Murphy F.A., Studdert M.J., White D.O.: Structure and Composition of Viruses. Veterinary Virology. 3–19, doi: 10.1016/B978-0-12-253055-5.50005-0 (2014)FennerF.BachmannP.A.GibbsE.P.J.MurphyF.A.StuddertM.J.WhiteD.O.Structure and Composition of VirusesVeterinary Virology.31910.1016/B978-0-12-253055-5.50005-02014Open DOISearch in Google Scholar
Flynn M., Dooley J.: The microbiome of the nasopharynx. J Med Microbiol.70, doi: 10.1099/jmm.0.001368 (2021)FlynnM.DooleyJ.The microbiome of the nasopharynxJ Med Microbiol.7010.1099/jmm.0.0013682021845909534165422Open DOISearch in Google Scholar
Forbes J.D., Bernstein C.N., Tremlett H., Van Domselaar G., Knox N.C.: A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol.9, doi: 10.3389/fmicb.2018.03249 (2019)ForbesJ.D.BernsteinC.N.TremlettH.Van DomselaarG.KnoxN.C.A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease?Front Microbiol.910.3389/fmicb.2018.032492019633368230687254Open DOISearch in Google Scholar
Gaci N., Borrel G., Tottey W., O’Toole P.W., Brugère J.F.: Archaea and the human gut: new beginning of an old story. World J Gastroenterol.20, 16062–78, doi: 10.3748/wjg.v20.i43.16062 (2014)GaciN.BorrelG.TotteyW.O’TooleP.W.BrugèreJ.F.Archaea and the human gut: new beginning of an old storyWorld J Gastroenterol.20160627810.3748/wjg.v20.i43.160622014423949225473158Open DOISearch in Google Scholar
Gao Z., Kang Y., Yu J., Ren L.: Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genomics Proteomics Bioinformatics.12, 144–150, doi: 10.1016/j.gpb.2014.06.001 (2014)GaoZ.KangY.YuJ.RenL.Human pharyngeal microbiome may play a protective role in respiratory tract infectionsGenomics Proteomics Bioinformatics.1214415010.1016/j.gpb.2014.06.0012014441133324953866Open DOISearch in Google Scholar
Glare P.G.W.: Oxford Latin Dictionary. Oxford University Press/Clarendon Press, London (1982)GlareP.G.W.Oxford Latin DictionaryOxford University Press/Clarendon PressLondon1982Search in Google Scholar
Glendinning L., Free A.: Supra-organismal interactions in the human intestine. Front Cell Infect Microbiol.4, doi: 10.3389/fcimb.2014.00047 (2014)GlendinningL.FreeA.Supra-organismal interactions in the human intestineFront Cell Infect Microbiol.410.3389/fcimb.2014.000472014400594924795867Open DOISearch in Google Scholar
Gould A.L., Zhang V., Lamberti L., Jones E.W., Obadia B., Korasidis N., Gavryushkin A., Carlson J.M., Beerenwinkel N., Ludington W.B.: Microbiome interactions shape host fitness. Proc Natl Acad Sci USA, 115, E11951–E11960, doi: 10.1073/pnas.1809349115 (2018)GouldA.L.ZhangV.LambertiL.JonesE.W.ObadiaB.KorasidisN.GavryushkinA.CarlsonJ.M.BeerenwinkelN.LudingtonW.B.Microbiome interactions shape host fitnessProc Natl Acad Sci USA115E11951E1196010.1073/pnas.18093491152018630494930510004Open DOISearch in Google Scholar
Gribaldo S., Brochier-Armanet C.: The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci.361, 1007–1022, doi: 10.1098/rstb.2006.1841 (2006)GribaldoS.Brochier-ArmanetC.The origin and evolution of Archaea: a state of the artPhilos Trans R Soc Lond B Biol Sci.3611007102210.1098/rstb.2006.18412006157872916754611Open DOISearch in Google Scholar
Grine G., Boualam MA., Drancourt M.: Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach. Eur J Clin Microbiol Infect Dis.36, 2449–2455, doi: 10.1007/s10096-017-3084-7 (2017)GrineG.BoualamMA.DrancourtM.Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomachEur J Clin Microbiol Infect Dis.362449245510.1007/s10096-017-3084-7201728823095Open DOISearch in Google Scholar
Han Y., Gong Z., Sun G., Xu J., Qi C., Sun W., Jiang H., Cao P., Ju H.: Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol.12, 1–14, doi: 10.3389/fmicb.2021.680101 (2021)HanY.GongZ.SunG.XuJ.QiC.SunW.JiangH.CaoP.JuH.Dysbiosis of Gut Microbiota in Patients With Acute Myocardial InfarctionFront Microbiol.1211410.3389/fmicb.2021.6801012021829089534295318Open DOISearch in Google Scholar
Hillman E.T, Kozik A.J., Hooker C.A., Burnett J.L., Heo Y., Kiesel V.A., Nevins C.J., Oshiro J.M.K.I., Robins M.M., Thakkar R.D., Wu S.T., Lindemann S.R.: Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genom.6, doi: 10.1099/mgen.0.000399 (2020)HillmanE.TKozikA.J.HookerC.A.BurnettJ.L.HeoY.KieselV.A.NevinsC.J.OshiroJ.M.K.I.RobinsM.M.ThakkarR.D.WuS.T.LindemannS.R.Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among speciesMicrob Genom.610.1099/mgen.0.0003992020747862532589566Open DOISearch in Google Scholar
Hillman E.T., Lu H., Yao T., Nakatsu C.H.: Microbial Ecology along the Gastrointestinal Tract. Microbes. Environ.32, 300–313, doi: 10.1264/jsme2.ME17017 (2017)HillmanE.T.LuH.YaoT.NakatsuC.H.Microbial Ecology along the Gastrointestinal TractMicrobes. Environ.3230031310.1264/jsme2.ME170172017574501429129876Open DOISearch in Google Scholar
Ho S.X., Min N., Wong E.P.Y.: Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth disease. npj Biofilms Microbiomes.7, 1–8, doi: 10.1038/s41522-021-00190-y (2021)HoS.X.MinN.WongE.P.Y.Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth diseasenpj Biofilms Microbiomes.71810.1038/s41522-021-00190-y2021789591633608551Open DOISearch in Google Scholar
Hounnou G., Destrieux C., Desmé J., Bertrand P., Velut S.: “Anatomical study of the length of the human intestine”. Surgical and Radiologic Anatomy.24, 290–294, doi: 10.1007/s00276-002-0057-y (2002)HounnouG.DestrieuxC.DesméJ.BertrandP.VelutS.“Anatomical study of the length of the human intestine”Surgical and Radiologic Anatomy.2429029410.1007/s00276-002-0057-y200212497219Open DOISearch in Google Scholar
Horz H.P., Conrads G.: Methanogenic Archaea and oral infections – ways to unravel the black box. J Oral Microbiol. doi: 10.3402/jom.v3i0.5940 (2011)HorzH.P.ConradsG.Methanogenic Archaea and oral infections – ways to unravel the black boxJ Oral Microbiol.10.3402/jom.v3i0.59402011308659321541092Open DOISearch in Google Scholar
Horz H.P., Conrads G.: The discussion goes on: What is the role of Euryarchaeota in humans? Archaea. 1–8, doi: 10.1155/2010/967271 (2010)HorzH.P.ConradsG.The discussion goes on: What is the role of Euryarchaeota in humans?Archaea.1810.1155/2010/9672712010302186721253553Open DOISearch in Google Scholar
Hunt RH, Yaghoobi M.: The Esophageal and Gastric Microbiome in Health and Disease. Gastroenterol Clin North Am.46, 121–141, doi: 10.1016/j.gtc.2016.09.009 (2017)HuntRHYaghoobiM.The Esophageal and Gastric Microbiome in Health and DiseaseGastroenterol Clin North Am.4612114110.1016/j.gtc.2016.09.009201728164846Open DOISearch in Google Scholar
Huseyin C.E., O’Toole P.W., Cotter P.D., Scanlan P.D.: Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev.41, 479–511, doi: 10.1093/femsre/fuw047 (2017)HuseyinC.E.O’TooleP.W.CotterP.D.ScanlanP.D.Forgotten fungi-the gut mycobiome in human health and diseaseFEMS Microbiol Rev.4147951110.1093/femsre/fuw047201728430946Open DOISearch in Google Scholar
Iebba V., Zanotta N., Campisciano G.: Profiling of Oral Microbiota and Cytokines in COVID-19 Patients. Front Microbiol.12, 1–13, doi: 10.3389/fmicb.2021.671813 (2021)IebbaV.ZanottaN.CampiscianoG.Profiling of Oral Microbiota and Cytokines in COVID-19 PatientsFront Microbiol.1211310.3389/fmicb.2021.6718132021836179434394024Open DOISearch in Google Scholar
Jain S., Caforio A., Driessen A.J.: Biosynthesis of archaeal membrane ether lipids. Front Microbiol.5, 1–16, doi: 10.3389/fmicb.2014.00641 (2014)JainS.CaforioA.DriessenA.J.Biosynthesis of archaeal membrane ether lipidsFront Microbiol.511610.3389/fmicb.2014.006412014424464325505460Open DOISearch in Google Scholar
Jung A., Raßbach A., Pulpetta R.L.:. Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun.10, 1–16, doi: 10.1038/s41467-019-11242-5 (2019)JungA.RaßbachA.PulpettaR.L.Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptuniumNat Commun.1011610.1038/s41467-019-11242-52019665043031337764Open DOISearch in Google Scholar
Kahai P., Mandiga P., Wehrle C.J., Lobo S.: Anatomy, Abdomen and Pelvis, Large Intestine. StatPearls Publishing, Treasure Island (2020)KahaiP.MandigaP.WehrleC.J.LoboS.Anatomy, Abdomen and Pelvis, Large IntestineStatPearls PublishingTreasure Island2020Search in Google Scholar
Kastl A.J. Jr, Terry N.A., Wu G.D., Albenberg L.G.: The Structure and Function of the Human Small Intestinal Microbiota:Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol.9, 33–45, doi: 10.1016/j.jcmgh.2019.07.006 (2020)KastlA.J.JrTerryN.A.WuG.D.AlbenbergL.G.The Structure and Function of the Human Small Intestinal Microbiota:Current Understanding and Future DirectionsCell Mol Gastroenterol Hepatol.9334510.1016/j.jcmgh.2019.07.0062020688163931344510Open DOISearch in Google Scholar
Kim J.Y., Whon T.W., Lim M.Y.: The human gut archaeome: identification of diverse haloarchaea in Korean subjects. Microbiome.8, 114, doi: 10.1186/s40168-020-00894-x.96 (2020)KimJ.Y.WhonT.W.LimM.Y.The human gut archaeome: identification of diverse haloarchaea in Korean subjectsMicrobiome.811410.1186/s40168-020-00894-x.962020Open DOISearch in Google Scholar
Koch A.L.: Control of the bacterial cell cycle by cytoplasmic growth. Crit Rev Microbiol.28, 61–77, doi: 10.1080/1040-840291046696 (2002)KochA.L.Control of the bacterial cell cycle by cytoplasmic growthCrit Rev Microbiol.28617710.1080/1040-840291046696200212003041Open DOISearch in Google Scholar
Koonin, E.V., Senkevich T.G., Dolja V.V.: The ancient Virus World and evolution of cells. Biology direct.1, 1–27, doi: 10.1186/1745-6150-1-29 (2006)KooninE.V.SenkevichT.G.DoljaV.V.The ancient Virus World and evolution of cellsBiology direct.112710.1186/1745-6150-1-292006159457016984643Open DOISearch in Google Scholar
Kosznik-Kwaśnicka K., Węgrzyn A. i wsp.: Biological aspects of phage therapy versus antibiotics against Salmonella enterica serovar Typhimurium infection of chickens. Front. Cell. Infect. Microbiol. 12:941867, doi. 10.3389/fcimb.2022.941867 (2022)Kosznik-KwaśnickaK.WęgrzynA.Biological aspects of phage therapy versus antibiotics against Salmonella enterica serovar Typhimurium infection of chickensFront. Cell. Infect. Microbiol.1294186710.3389/fcimb.2022.9418672022938594935992162Open DOISearch in Google Scholar
Brenner J. D., Krieg N.R., Staley J. T. Garrity G.M, Boone D.R., Vos P., Goodfellow M., Rainey F.A., Schleifer K-H.: Bergey’s Manual of Systematic Bacteriology: Volume Two: The Proteobacteria. US: Springer, Baltimore (2005)BrennerJ. D.KriegN.R.StaleyJ. T.GarrityG.MBooneD.R.VosP.GoodfellowM.RaineyF.A.SchleiferK-H.Bergey’s Manual of Systematic Bacteriology: Volume Two: The ProteobacteriaUSSpringer, Baltimore200510.1007/0-387-28022-7Search in Google Scholar
Krug R.M., Wagner R.R.: “virus”. Encyclopedia Britannica, https://www.britannica.com/science/virus(2022)KrugR.M.WagnerR.R.“virus”Encyclopedia Britannicahttps://www.britannica.com/science/virus2022Search in Google Scholar
La Duc M.T., Dekas A., Osman S., Moiss l.C, Newcombe D., Venkateswaran K.: Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol.73, 2600–2611, doi: 10.1128/AEM.03007-0 (2007)La DucM.T.DekasA.OsmanS.Moissl.CNewcombeD.VenkateswaranK.Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environmentsAppl. Environ. Microbiol.732600261110.1128/AEM.03007-02007Open DOISearch in Google Scholar
Lecuit M., Eloit M.: The Viruses of the Gut Microbiota. Microbiota in Gastroindestinal Pathophysiology21, 179–182 (2017)LecuitM.EloitM.The Viruses of the Gut MicrobiotaMicrobiota in Gastroindestinal Pathophysiology21179182201710.1016/B978-0-12-804024-9.00021-5Search in Google Scholar
Lederberg J., McCray A.T.: Ome Sweet ‘Omics – a genealogical treasury of words. Scientist,15, 8 (2001)LederbergJ.McCrayA.T.Ome Sweet ‘Omics – a genealogical treasury of wordsScientist,1582001Search in Google Scholar
Leite G.G.S., Weitsman S., Parodi G.: Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Dig Dis Sci.65, 2595–2604, doi: 10.1007/s10620-020-06173-x (2020)LeiteG.G.S.WeitsmanS.ParodiG.Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE StudyDig Dis Sci.652595260410.1007/s10620-020-06173-x2020741937832140945Open DOISearch in Google Scholar
Luganini A., Gribaudo G.: Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution. Front Microbiol.11, doi: 10.3389/fmicb.2020.01140 (2020)LuganiniA.GribaudoG.Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During EvolutionFront Microbiol.1110.3389/fmicb.2020.011402020727019532547531Open DOISearch in Google Scholar
Lv J., Guo L., Liu J.J., Zhao H.P., Zhang J., Wang J.H.: Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol.25, 2149–2161, doi: 10.3748/wjg.v25.i18.2149 (2018)LvJ.GuoL.LiuJ.J.ZhaoH.P.ZhangJ.WangJ.H.Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinomaWorld J Gastroenterol.252149216110.3748/wjg.v25.i18.21492018652615631143067Open DOISearch in Google Scholar
Macfarlane G.T., Macfarlane S.: Fermentation in the Human Large Intestine. J. of Clinical Gastroenterology.45, S120–S127, doi: 10.1097/MCG.0b013e31822fecfe (2011)MacfarlaneG.T.MacfarlaneS.Fermentation in the Human Large IntestineJ. of Clinical Gastroenterology.45S120S12710.1097/MCG.0b013e31822fecfe201121992950Open DOISearch in Google Scholar
Malard F., Dore J., Gaugler B., Mohty M.: Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol.14, 547–554, doi: 10.1038/s41385-020-00365-4 (2021)MalardF.DoreJ.GauglerB.MohtyM.Introduction to host microbiome symbiosis in health and diseaseMucosal Immunol.1454755410.1038/s41385-020-00365-42021772462533299088Open DOISearch in Google Scholar
Malinowska M., Tokarz-Deptuła B.. Deptuła W.: Mikrobiom układu oddechowego w warunkach fizjologicznych i patologicznych. Post. Mikrobiol.55, 279–283 (2015)MalinowskaM.Tokarz-DeptułaB.DeptułaW.Mikrobiom układu oddechowego w warunkach fizjologicznych i patologicznychPost. Mikrobiol.552792832015Search in Google Scholar
Mar Rodríguez M., Real J.M. i wsp.: Obesity changes the human gut mycobiome. Sci Rep.5, 1–14, doi: 10.1038/srep14600 (2015)Mar RodríguezM.RealJ.M.Obesity changes the human gut mycobiomeSci Rep.511410.1038/srep146002015460097726455903Open DOISearch in Google Scholar
Martínez A., Kuraji R., Kapila Y.: The human oral virome: Shedding light on the dark matter. Periodontology 2000.87, 282–298, doi: 10.1111/prd.12396 (2021)MartínezA.KurajiR.KapilaY.The human oral virome: Shedding light on the dark matterPeriodontology 2000.8728229810.1111/prd.123962021845707534463988Open DOISearch in Google Scholar
Martinez-Guryn K., Hubert N., Frazier K., Urlass S., Musch M.W., Ojeda P., Pierre J.F., Miyoshi J., Sontag T.J., Cham C.M., Reardon C.A., Leone V., Chang E.B.: Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe.23, 458–469, doi: 10.1016/j.chom.2018.03.011 (2018)Martinez-GurynK.HubertN.FrazierK.UrlassS.MuschM.W.OjedaP.PierreJ.F.MiyoshiJ.SontagT.J.ChamC.M.ReardonC.A.LeoneV.ChangE.B.Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary LipidsCell Host Microbe.2345846910.1016/j.chom.2018.03.0112018591269529649441Open DOISearch in Google Scholar
Matijašić M., Meštrović T., Paljetak H.Č., Perić M., Barešić A., Verbanac D.: Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. Int J Mol Sci.21, 1–21, doi: 10.3390/ijms21082668 (2020)MatijašićM.MeštrovićT.PaljetakH.Č.PerićM.BarešićA.VerbanacD.Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBDInt J Mol Sci.2112110.3390/ijms210826682020721537432290414Open DOISearch in Google Scholar
May M., Abrams J.A.: Emerging Insights into the Esophageal Microbiome. Curr Treat Options Gastroenterol.16, 72–85, doi: 10.1007/s11938-018-0171-5 (2018)MayM.AbramsJ.A.Emerging Insights into the Esophageal MicrobiomeCurr Treat Options Gastroenterol.16728510.1007/s11938-018-0171-52018584354029350339Open DOISearch in Google Scholar
McConnaughey M.: Physical Chemical Properties of Fungi. Biomedical Sciences. Elsevier, Netherlands (2014)McConnaugheyM.Physical Chemical Properties of FungiBiomedical SciencesElsevierNetherlands201410.1016/B978-0-12-801238-3.05231-4Search in Google Scholar
Mimee M., Citorik R.J., Lu T.K.: Microbiome therapeutics – Advances and challenges. Advanced Drug Delivery Reviews.105, 44–54, doi: 10.1016/j.addr.2016.04.032 (2016)MimeeM.CitorikR.J.LuT.K.Microbiome therapeutics – Advances and challengesAdvanced Drug Delivery Reviews.105445410.1016/j.addr.2016.04.0322016509377027158095Open DOISearch in Google Scholar
Mishra K., Bukavina L., Ghannoum M.: Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol.12, 1–15, doi: 10.3389/fmicb.2021.636131 (2021)MishraK.BukavinaL.GhannoumM.Symbiosis and Dysbiosis of the Human MycobiomeFront Microbiol.1211510.3389/fmicb.2021.6361312021849325734630340Open DOISearch in Google Scholar
Moissl-Eichinger C., Pausan M., Taffner J., Berg G., Bang C., Schmitz R. A.: Archaea Are Interactive Components of Complex Microbiomes. Trends in Microbiology.26, 70–85. doi: 10.1016/j.tim.2017.07.004 (2018)Moissl-EichingerC.PausanM.TaffnerJ.BergG.BangC.SchmitzR. A.Archaea Are Interactive Components of Complex MicrobiomesTrends in Microbiology.26708510.1016/j.tim.2017.07.004201828826642Open DOISearch in Google Scholar
Muñoz-Tamayo R., Muñoz-Tamayo S., Laroche J-P., Marion B., Marion L.: Human colon: a complex bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic chain. IWA World Congress on Anaerobic Digestion (2007)Muñoz-TamayoR.Muñoz-TamayoS.LarocheJ-P.MarionB.MarionL.Human colon: a complex bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic chainIWA World Congress on Anaerobic Digestion2007Search in Google Scholar
Mushnikov N.V., Fomicheva A., Gomelsky M., Bowman G.R.: Inducible asymmetric cell division and cell differentiation in a bacterium. Nat Chem Biol.15, 925–931, doi: 10.1038/s41589-019-0340-4 (2019)MushnikovN.V.FomichevaA.GomelskyM.BowmanG.R.Inducible asymmetric cell division and cell differentiation in a bacteriumNat Chem Biol.1592593110.1038/s41589-019-0340-42019743975431406376Open DOISearch in Google Scholar
Nardone G., Compare D.: The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J.3, 255–260, doi: 10.1177/2050640614566846 (2015)NardoneG.CompareD.The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases?United European Gastroenterol J.325526010.1177/20506406145668462015448053526137299Open DOISearch in Google Scholar
Neurath M.F., Überla K., Ng S.C.: Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut:70, 1605–1608, doi: 10.1136/gutjnl-2021-324622 (2020)NeurathM.F.ÜberlaK.NgS.C.Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19Gut701605160810.1136/gutjnl-2021-3246222020807662933903146Open DOISearch in Google Scholar
Nimish Deo P., Deshmukh R.: Oral Microbiome – Unveiling the Fundamentals. J Oral Maxillofac Pathol.23, 122–128, doi: 10.4103/jomfp.JOMFP_304_18 (2019)Nimish DeoP.DeshmukhR.Oral Microbiome – Unveiling the FundamentalsJ Oral Maxillofac Pathol.2312212810.4103/jomfp.JOMFP_304_182019650378931110428Open DOISearch in Google Scholar
Ozbey G., Sproston E., Hanafiah A.: Helicobacter pylori Infection and Gastric Microbiota. Euroasian J Hepatogastroenterol.10, 36–41, doi: 10.5005/jp-journals-10018-1310 (2020)OzbeyG.SprostonE.HanafiahA.Helicobacter pylori Infection and Gastric MicrobiotaEuroasian J Hepatogastroenterol.10364110.5005/jp-journals-10018-13102020737660132742971Open DOISearch in Google Scholar
Pérez-Brocal V., Moya A.: The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS One.13, doi: 10.1371/journal.pone.0191867 (2018)Pérez-BrocalV.MoyaA.The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain)PLoS One.1310.1371/journal.pone.01918672018580525929420668Open DOISearch in Google Scholar
Park C.H., Lee S.K.: Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic Review. J Neurogastroenterol Motil.26, 171–179, doi: 10.5056/jnm19240 (2020)ParkC.H.LeeS.K.Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic ReviewJ Neurogastroenterol Motil.2617117910.5056/jnm192402020717650732235026Open DOISearch in Google Scholar
Pattison J.R., Patou G.: Parvoviruses. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch, Galveston (1996)PattisonJ.R.PatouG.ParvovirusesMedical Microbiology4th editionGalveston (TX)University of Texas Medical Branch, Galveston1996Search in Google Scholar
Qin J., Wang J. i wsp.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature.464, 59–65, doi: 10.1038/nature08821 (2010)QinJ.WangJ.A human gut microbial gene catalogue established by metagenomic sequencingNature.464596510.1038/nature088212010377980320203603Open DOISearch in Google Scholar
Radaic A., Kapila Y.L.: The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J.19, 1335–1360, doi: 10.1016/j.csbj.2021.02.010 (2021)RadaicA.KapilaY.L.The oralome and its dysbiosis: New insights into oral microbiome-host interactionsComput Struct Biotechnol J.191335136010.1016/j.csbj.2021.02.0102021796068133777334Open DOISearch in Google Scholar
Rajendhran J., Gunasekaran P.: Human Microbiomics. Indian J. Microbiol.50, 109–112, doi: 10.1007/s12088-010-0034-9 (2010)RajendhranJ.GunasekaranP.Human MicrobiomicsIndian J. Microbiol.5010911210.1007/s12088-010-0034-92010345028023100817Open DOISearch in Google Scholar
Requena T., Velasco M.: The human microbiome in sickness and in health. Rev Clin Esp. doi: 10.1016/j.rce.2019.07.004 (2019)RequenaT.VelascoM.The human microbiome in sickness and in healthRev Clin Esp.10.1016/j.rce.2019.07.004201931522775Open DOISearch in Google Scholar
Ridlon J.M., Kang D.J., Hylemon P.B., Bajaj J.S.: Bile acids and the gut microbiome. Curr Opin Gastroenterol.30, 332–338, doi: 10.1097/MOG.0000000000000057 (2014)RidlonJ.M.KangD.J.HylemonP.B.BajajJ.S.Bile acids and the gut microbiomeCurr Opin Gastroenterol.3033233810.1097/MOG.00000000000000572014421553924625896Open DOISearch in Google Scholar
Ridlon J.M., Kang D.J., Hylemon P.B.: Bile salt biotransformations by human intestinal bacteria. J Lipid Res.47, 241–259, doi: 10.1194/jlr.R500013-JLR200 (2006)RidlonJ.M.KangD.J.HylemonP.B.Bile salt biotransformations by human intestinal bacteriaJ Lipid Res.4724125910.1194/jlr.R500013-JLR200200616299351Open DOISearch in Google Scholar
Rieux A., Soubeyrand S., Bonnot F., Klein E.K., Ngando J.E., Mehl A., Ravigne V., Carlier J., de Lapeyre de Bellaire L.: Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PloS one.9, doi: 10.1371/journal.pone.0103225 (2014)RieuxA.SoubeyrandS.BonnotF.KleinE.K.NgandoJ.E.MehlA.RavigneV.CarlierJ.de Lapeyre de BellaireL.Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experimentPloS one.910.1371/journal.pone.01032252014413050025116080Open DOISearch in Google Scholar
Robinson N.P.: Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerg Top Life Sci.2, 453–458, doi: 10.1042/ETLS20180022 (2018)RobinsonN.P.Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insightsEmerg Top Life Sci.245345810.1042/ETLS201800222018728899933525822Open DOISearch in Google Scholar
Rowan-Nash A.D., Korry B.J., Mylonakis E., Belenky P.: Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev.83, 1–63, doi: 10.1128/MMBR.00044-18 (2019)Rowan-NashA.D.KorryB.J.MylonakisE.BelenkyP.Cross-Domain and Viral Interactions in the MicrobiomeMicrobiol Mol Biol Rev.8316310.1128/MMBR.00044-182019638344430626617Open DOISearch in Google Scholar
Ryu, W.-S.: Molecular Virology of Human Pathogenic Viruses. Academic Press, Korea (2007)RyuW.-S.Molecular Virology of Human Pathogenic VirusesAcademic PressKorea2007Search in Google Scholar
Saffouri G.B., Shields-Cutler R.R., Chen J.:. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun.10, doi: 10.1038/s41467-019-09964-7 (2019)SaffouriG.B.Shields-CutlerR.R.ChenJ.Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disordersNat Commun.1010.1038/s41467-019-09964-72019649486631043597Open DOISearch in Google Scholar
Salehi B., Dimitrijević M., Aleksić A., Neffe-Skocińska K., Zielińska D., Kołożyn-Krajewska D., Sharifi-Rad J., Stojanović-Radić Z., Prabu S.M., Rodrigues C.F., Martins N.: Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Crit Rev Food Sci Nutr.: 61, 1415–1428, doi: 10.1080/10408398.2020.1760202 (2021)SalehiB.DimitrijevićM.AleksićA.Neffe-SkocińskaK.ZielińskaD.Kołożyn-KrajewskaD.Sharifi-RadJ.Stojanović-RadićZ.PrabuS.M.RodriguesC.F.MartinsN.Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbioticsCrit Rev Food Sci Nutr.611415142810.1080/10408398.2020.1760202202132400169Open DOISearch in Google Scholar
Scheithauer T.P., Dallinga-Thie G.M., de Vos W.M., Nieuwdorp M., van Raalte D.H.: Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol, Metab.5, 759–770, doi: 10.1016/j.molmet.2016.06.002 (2016)ScheithauerT.P.Dallinga-ThieG.M.de VosW.M.NieuwdorpM.van RaalteD.H.Causality of small and large intestinal microbiota in weight regulation and insulin resistanceMol, Metab.575977010.1016/j.molmet.2016.06.0022016500422727617199Open DOISearch in Google Scholar
Schulz H.N., Jorgensen B.B.: Big bacteria. Annu Rev Microbiol.55, 105–137, doi: 10.1146/annurev.micro.55.1.105 (2001)SchulzH.N.JorgensenB.B.Big bacteriaAnnu Rev Microbiol.5510513710.1146/annurev.micro.55.1.105200111544351Open DOISearch in Google Scholar
Sundin O.H., Mendoza-Ladd A., Zeng M., Diaz-Arévalo D., Morales E., Fagan B.M., Ordoñez J., Velez P., Antony N., McCallum R.W.: The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol., 17, doi: 10.1186/s12866-017-1059-6 (2017)SundinO.H.Mendoza-LaddA.ZengM.Diaz-ArévaloD.MoralesE.FaganB.M.OrdoñezJ.VelezP.AntonyN.McCallumR.W.The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colonBMC Microbiol.1710.1186/s12866-017-1059-62017551304028716079Open DOISearch in Google Scholar
Sundin O. H., Mendoza-Ladd A., Zeng M., Diaz-Arévalo D., Morales E., Fagan B. M., Ordonez J., Velez P., Antony N., McCallum R. W.: The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol.17, 160, doi: 10.1186/s12866-017-1059-6 (2017)SundinO. H.Mendoza-LaddA.ZengM.Diaz-ArévaloD.MoralesE.FaganB. M.OrdonezJ.VelezP.AntonyN.McCallumR. W.The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colonBMC Microbiol.1716010.1186/s12866-017-1059-62017Open DOISearch in Google Scholar
Takakura W., Pimentel M.: Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An Update. Front. Psychiatry.11, doi: 10.3389/fpsyt.2020.00664 (2020)TakakuraW.PimentelM.Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An UpdateFront. Psychiatry.1110.3389/fpsyt.2020.006642020736624732754068Open DOISearch in Google Scholar
The Viruses of the Gut Microbiota. Chapter 21 Microbiota in Gastrointestinal pathophysiology. 179–183, doi: 10.1016/B978-0-12-804024-9.00021-5 (2017)The Viruses of the Gut MicrobiotaChapter 21 Microbiota in Gastrointestinal pathophysiology17918310.1016/B978-0-12-804024-9.00021-52017Open DOISearch in Google Scholar
Tiew P.Y., Mac Aogain M., Ali N.A.B.M., Thng K.X., Goh K., Lau K.J.X., Chotirmall S.H.: The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia.85, 207–231, doi: 10.1007/s11046-019-00413-z (2020)TiewP.Y.Mac AogainM.AliN.A.B.M.ThngK.X.GohK.LauK.J.X.ChotirmallS.H.The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and ChallengesMycopathologia.8520723110.1007/s11046-019-00413-z2020722344131894501Open DOISearch in Google Scholar
Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I.: The human microbiome project: a strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease. Nature.449, 804–810, doi: 10.1038/nature06244 (2007)TurnbaughP.J.LeyR.E.HamadyM.Fraser-LiggettC.M.KnightR.GordonJ.I.The human microbiome project: a strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to diseaseNature.44980481010.1038/nature062442007370943917943116Open DOISearch in Google Scholar
Underhill D.M., Iliev I.D.: The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol.14, 405–416, doi: 10.1038/nri3684 (2014)UnderhillD.M.IlievI.D.The mycobiota: interactions between commensal fungi and the host immune systemNat. Rev. Immunol.1440541610.1038/nri36842014433285524854590Open DOISearch in Google Scholar
Urry L.A., Cain M.L., Wasserman S.A., Minorsky P.V.: Campbell Biology 12th Edition. Pearson, New York (2020)UrryL.A.CainM.L.WassermanS.A.MinorskyP.V.Campbell Biology12th EditionPearsonNew York2020Search in Google Scholar
Van de Pol J.A., van Best N., Mbakwa C.A., Thijs C., Savelkoul P.H., Arts I.C., Hornef M.W., Mommers M., Penders J.: Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in Children. Front Microbiol.8, doi: 10.3389/fmicb.2017.00355 (2017)Van de PolJ.A.van BestN.MbakwaC.A.ThijsC.SavelkoulP.H.ArtsI.C.HornefM.W.MommersM.PendersJ.Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in ChildrenFront Microbiol.810.3389/fmicb.2017.003552017534491428344572Open DOISearch in Google Scholar
Varricchi G., Poto R., Ianiro G.: Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Front Immunol.12, doi: 10.3389/fimmu.2021.712915 (2021)VarricchiG.PotoR.IaniroG.Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding QuestionsFront Immunol.1210.3389/fimmu.2021.7129152021836641234408753Open DOISearch in Google Scholar
Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K.: Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms.8, doi: 10.3390/microorganisms8040483 (2020)VemuriR.ShankarE.M.ChieppaM.EriR.KavanaghK.Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and HelminthsMicroorganisms.810.3390/microorganisms80404832020723238632231141Open DOISearch in Google Scholar
Young KD.: Bacterial morphology: why have different shapes? Curr Opin Microbiol. 596–600, doi: 10.1016/j.mib.2007.09.009 (2007)YoungKD.Bacterial morphology: why have different shapes?Curr Opin Microbiol.59660010.1016/j.mib.2007.09.0092007216950317981076Open DOISearch in Google Scholar
Zarco M., Vess T., Ginsburg G.: The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis.18, 109–120, doi: 10.1111/j.1601-0825.2011.01851.x (2012)ZarcoM.VessT.GinsburgG.The oral microbiome in health and disease and the potential impact on personalized dental medicineOral Dis.1810912010.1111/j.1601-0825.2011.01851.x201221902769Open DOISearch in Google Scholar
Zhang Y., Wang X., Li H., Ni C., Du Z., Yan F.: Human oral microbiota and its modulation for oral health. Biomed Pharmacother.99, 883–893, doi: 10.1016/j.biopha.2018.01.146 (2018)ZhangY.WangX.LiH.NiC.DuZ.YanF.Human oral microbiota and its modulation for oral healthBiomed Pharmacother.9988389310.1016/j.biopha.2018.01.146201829710488Open DOISearch in Google Scholar
Zhong M., Xiong Y., Zhao J.: Candida albicans disorder is associated with gastric carcinogenesis. Theranostics.11, 4945–4956, doi: 10.7150/thno.55209 (2021)ZhongM.XiongY.ZhaoJ.Candida albicans disorder is associated with gastric carcinogenesisTheranostics.114945495610.7150/thno.552092021797830633754037Open DOISearch in Google Scholar
Zikai W., Rongrong R., Yunsheng Y.: Mucosa microbiome of gastric lesions: Fungi and bacteria interactions. Prog Mol Biol Transl Sci.171, 195–213, (2020)ZikaiW.RongrongR.YunshengY.Mucosa microbiome of gastric lesions: Fungi and bacteria interactionsProg Mol Biol Transl Sci.171195213202010.1016/bs.pmbts.2020.03.00432475522Search in Google Scholar
Zinder N.D., Lederberg J.: Genetic exchange in Salmonella. J Bacteriol.64, 679–699, doi: 10.1128/jb.64.5.679-699.1952 (1952)ZinderN.D.LederbergJ.Genetic exchange in SalmonellaJ Bacteriol.6467969910.1128/jb.64.5.679-699.1952195216940912999698Open DOISearch in Google Scholar