1. bookVolume 61 (2022): Issue 4 (December 2022)
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Open Access

The Human Gastrointestinal Tract Microbiome – Selected Data

Published Online: 30 Nov 2022
Volume & Issue: Volume 61 (2022) - Issue 4 (December 2022)
Page range: 223 - 233
Received: 01 Oct 2022
Accepted: 01 Nov 2022
Journal Details
License
Format
Journal
eISSN
2545-3149
First Published
01 Mar 1961
Publication timeframe
4 times per year
Languages
English, Polish
Wstęp

Współczesny człowiek na każdym kroku styka się z mikroskopijnymi zarazkami, które często postrzegane są jako nasi „wrogowie”, kojarząc je głównie z mikroorganizmami o właściwościach patogennych. Lata badań nad nimi prowadzone przez mikrobiologów przyczyniły się do opracowania zabiegów profilaktycznych w postaci szczepionek zabezpieczających przed zainfekowaniem się nimi. Jednym z wielkich naukowców – mikrobiologów był Ludwik Pasteur, który opracował szczepionkę przeciw takim chorobom bakteryjnym jak wąglik, pastereloza drobiu, różyca świń, a przede wszystkim przeciw chorobie wirusowej, śmiertelnej dla człowieka, jaką jest wścieklizna. W dzisiejszej dobie oprócz już wielu opracowanych szczepionek, możemy sięgać po chemioterapeutyki i antybiotyki w celu likwidacji mikroorganizmów stanowiących grupę tzw.: „wrogów”. Nierzadko jednak czynimy tym sposobem więcej szkody, niż pożytku, gdyż ich eradykacja powoduje szkodliwe skutki wobec ludzkiego organizmu, bo wśród nich są mikroorganizmy egzystujące w symbiozie z organizmem człowieka [1, 29, 71]. Wynika i wiąże się to z faktem, że wiele społeczności mikroorganizmów od zarania dziejów to nasi „sojusznicy”, odpowiedzialni za niezliczoną ilość interakcji, zarówno pomiędzy ludzkim organizmem jak i pomiędzy sobą, przez co tworzą one “tarczę” ochronną, w powiązaniu z układem immunologicznym makroorganizmu [17, 79, 94]. Także ich wzajemne oddziaływania w tym na makroorganizm, układają się w dość zawiłą “mapę”, co powoduje, że mikroorganizmy oraz balans w proporcjach ich populacji, w sposób bardzo istotny wpływa na zachowanie homeostazy, w tym status odpornościowy organizmu [17, 41, 79, 87, 94]. Wykazano także, że oddziaływanie mikroorganizmów, warunkuje wiele stanów patologicznych m.in. choroby o podłożu immunologicznym, choroby metaboliczne, a nawet nowotworowe [1, 23, 40, 44, 71, 79, 92, 94, 102]. Stany te warunkowane są i tym, że więcej niż połowę komórek w organizmie człowieka stanowią mikroorganizmy przekraczające liczbę 100 trylionów, z czego większość kolonizuje przewód pokarmowy w postaci mikroorganizmów symbiotycznych i komensalnych [71, 102]. Właśnie bakterie symbiotyczne i komensalne zapewniają “ochronę” człowieka przed bakteriami chorobotwórczymi, stąd niszczenie ich stosując choćby chemioterapeutyki, powoduje wyjałowienie organizmu, co prowadzi do zachwiania w ich równowadze i dysbiozę [44]. Charakteryzując skład mikrobiomu należy dodać, że składa się on nie tylko ze „społeczności” mikroorganizmów symbiotycznych i komensalnych, ale także chorobotwórczych [66, 102]. Taki układ ekologiczny mikrobiomu u ssaków, w tym ludzi, jest bardzo dynamiczny, bo zmienia się w zależności od miejsca i trybu życia makroorganizmu, predyspozycji genetycznych, wieku, płci oraz diety, wliczając także stosowanie prebiotyków, probiotyków i ksenobiotyków [102, 114, 120]. Stąd przyjmuje się, że ssaki, w tym człowiek, wraz ze swoim mikrobiomem tworzą “superorganizm” [93].

Elementy składowe mikrobiomu przewodu pokarmowego człowieka

Przewód pokarmowy człowieka, który osiąga długość nawet do 7,6 metra, stanowi “dom” dla wielu różnorodnych mikroorganizmów [48]. Mikrobiom przewodu pokarmowego człowieka, tworzą bakterie, archeony, wirusy i grzyby, tworzące swoiste konsorcjum oddziaływujące wzajemnie na siebie, a które można przyrównać do “lasu deszczowego” [10, 102]. Dzieli się on na mikrobiom rdzeniowy – stały i mikrobiom zmienny [110]. Mikrobiom rdzeniowy tworzą dominujące gatunki mikroorganizmów, które znajdują się w różnych częściach zdrowego organizmu, uniwersalne dla większości populacji ludzkiej, natomiast mikrobiom zmienny będąc specyficzny dla danej osoby, ewoluuje w odpowiedzi m.in. na styl życia, miejsce zamieszkania czy jej dietę [110]. Efektem tego występujące w mikrobiomie rodzaje, gatunki i szczepy bakterii, archeonów, wirusów i grzybów, są specyficzne, odmienne i wyjątkowe dla danego osobnika, co można porównać do “odcisku palca” [28]. To konsorcjum mikroorganizmów w przewodzie pokarmowym pełni wiele istotnych funkcji m.in. tworzy ochronę przed patogenami, syntezuje witaminy i bierze udział w wytwarzaniu energii, przez co często określane jest jako “zapomniany organ” [17, 102].

Bakterie występujące i tworzące mikrobiom przewodu pokarmowego stanowią drugą po bakteriofagach największą grupę mikroorganizmów, bo zarejestrowano w jelitach ponad 1000 gatunków bakterii jelitowych, których liczba wciąż rośnie [102]. Dethlefsen i wsp.[28] przyjmują, że co najmniej 80% wszystkich gatunków bakterii w jelitach ludzkich jedynie identyfikować można metodami genetycznymi [64, 102, 110]. Niezależnie od tego faktu bakterie tworzące mikrobiom przewodu pokarmowego, zwiększają swoją liczbę także poprzez zdolność do spontanicznych mutacji i horyzontalnego transferu genów, przez co cechują się dynamiczną adaptacją do zmieniających się warunków, w tym nabywania oporności na działanie chemioterapeutyków [17]. Te jednokomórkowe mikroskopijne mikroorganizmy o tendencji do wszędobylskości i kolonizujące niemal każdy zakątek naszego organizmu, a także wiele środowisk naszego życia, cechują się dużą różnorodnością, choćby w zakresie wielkości. Otóż występująca w środowisku wodnym Thiomargarita namibiensis może osiągnąć 750 μm i być widoczna gołym okiem, za to Francisella tularensis kolonizująca organizm ssaków, w tym ludzki, ma jedynie 0,2 μm [104, 116, 117]. Pod względem morfologii bakterii można je podzielić na formy cylindryczne, kuliste, spiralne i nietypowe, zaś ze względu na metabolizm wyodrębnić można wśród nich, bakterie beztlenowe i tlenowe, zaś ze względu na grubość ich ściany komórkowej, bakterie Gram− i Gram+ [86]. Rozmnażanie bakterii zachodzi głownie na drodze bezpłciowej i odbywa się poprzez podział komórki bakteryjnej, z której powstają dwie identyczne komórki potomne [59, 112]. Opisano także u nich podział asymetryczny [83], rozmnażanie przez pączkowanie [55] oraz procesy parapłciowe – transdukcję [3, 121]. Tempo rozmnażania ich jest bardzo duże, bo potrafią w prawie każdym biotypie w dynamiczny sposób dostosowywać swój metabolizm do swoiście wydajnego wykorzystania wszystkich dostępnych składników odżywczych, nawet wbrew zmieniającym się warunkom [12].

Drugą grupą mikroorganizmów tworzących mikrobiom przewodu pokarmowego są archeony, których nazwa pochodzi od greckiego słowa „archaios” oznaczającego „prymitywny” lub „starożytny” [98]. Archeony to organizmy prokariotyczne, żyjące w warunkach termofilnych, ale także mające zdolność rozwoju i przetrwania nawet w warunkach ekstremalnych jak np. w podwodnych hydrotermalnych kominy [5, 37, 48, 63, 98]. Bytują one w warunkach mezofilnych w organizmach ssaków, w tym człowieka [5, 37, 48, 63, 98]. Archeony jako składowe mikrobiomu przewodu pokarmowego człowieka, badane były w mniejszym stopniu niż bakterie. Szacuje się, że w jelitach u ludzi archeony mogą stanowić do 21,1% wszystkich mikroorganizmów, przez co regulują i wpływają na mikrobiom tego biotopu [5, 7, 58, 81]. Większość z nich w ludzkim przewodzie pokarmowym to archeony metanogenne, cechujące się syntrofią bazującą na transporcie wodoru pomiędzy metanogennymi archeonami, a innymi rodzajami mikroorganizmów [58, 81]. Niektóre z nich metabolizują metan i redukują tym samym poziom wodoru, co stymuluje wzrost bakterii sacharolitycznych, choć także opisano archeony uczestniczące w metabolizmie węglowodanów [5, 113]. Archeony mogą być w pewnym stopniu powiązane z chorobami u ludzi [37]. Ich elementy procesów informacyjnych, bardziej przypominają eukariotyczne niż bakteryjne odpowiedniki, choć czasami są wspólne dla domeny Eukaryota i Prokaryota [42]. Cechują się one odmienną w stosunku do bakterii budową ściany komórkowej, w której brak peptydoglikanu, a ich błona posiada wiązania eterowe oraz występują u nich specyficzne enzymy i szlaki metaboliczne [33, 37, 54, 62, 81, 98]. Mają one wielkość od 0,1 μm do 15 μm i podobnie jak w przypadku bakterii, mogą przybierać kształt kulisty, cylindryczny i spiralny, choć także rejestruje się kształty nietypowe [33, 37, 116]. Brak u nich mitochondriów, aparatu Golgiego, retikulum endoplazmatycznego i lizosomów, zaś obecne u nich rybosomy, są zbliżone swoją strukturą do występujących u bakterii [33]. Rozmnażanie u archeonów podobnie jak u bakterii odbywa się drogą bezpłciową przez podział komórkowy, bądź poprzez pączkowanie [32]. Ich struktura genetyczna, a także ich szlaki transkrypcyjne i translacyjne, są bardziej podobne do domeny Eucaryota [5, 62].

Trzecią grupą zarazków, które tworzą mikrobiom przewodu pokarmowego ssaków, w tym człowieka są wirusy, które nie posiadają struktury komórkowej z organellami i układem metabolicznym [13]. Ich nazwa pochodzi od łacińskiego słowa vīrus oznaczającego truciznę/śluz, bądź jad [39]. Wirusy są najliczniejszymi jednostkami biologicznymi na Ziemi i wszechobecnymi pasożytami form życia komórkowego, w tym w przewodzie pokarmowym [100]. Ich wielkość może się wahać od rozmiaru około 18–26 nm u parwowirusów, do 250 nm – 2000 nm u wirusów olbrzymich [19, 27, 62, 90]. Wirusy zbudowane są z kapsydu o symetrii helikalnej lub kubicznej z zamkniętym w środku kwasem nukleinowym w postaci DNA lub RNA, będącym kodem genetycznym, który służy do replikacji wirusów [100]. Wirusy, podobnie jak bakterie, mutują, ale także ewoluują i adaptują się do układu odpornościowego gospodarza, co pozwala im kolonizować i infekować wiele makroorganizmów, w tym nie tylko ssaków ale także rośliny, bakterie, archeony oraz wirusy olbrzymie np. wirusy z rodziny – np. Mimiviridae, infekujące m.in. pierwotniaki występujące w ludzkich jelitach [15, 19, 27, 60, 65, 100]. W tej części przewodu pokarmowego człowieka (jelitach) zidentyfikowano ponad 140 000 gatunków wirusów, z których większość stanowią bakteriofagi [13], a których jest co najmniej dziesięciokrotnie więcej niż bakterii [13, 76, 99]. Laceuit i wsp. [65] wykazali że w treści jelit człowieka bez określenia w którym odcinku, zarejestrowano wirusy ssacze rodziny Picornaviridae (rodzaj Enterovirus, Parechovirus, Cardiovirus i Salivirus), Picobirnaviridae (rodzaj Picobirnavirus), Astroviridae (rodzaj Astrovirus), Reoviridae (rodzaj Rotavirus), Caliciviridae (rodzaj Norovirus, Sapovirus), Adenoviridae (rodzaj Mastadenovirus C and F i inne), Anelloviridae (rodzaj Anellovirus), Cycloviridae (Circovirus, Cyclovirus) i Parvoviridae (Bocavirus). Inne badania [7] wykazały w jamie ustnej, nosie, płynie gardłowym i ślinie, że zawartość wirusów waha się od 109 cząstek na gram do 108 na mililitr i są to głównie bakteriofagi. W płytce nazębnej stwierdzono 1010 cząsteczek wirusowych na miligram płytki [68, 74, 108].

Następną grupę mikroorganizmów tworzących mikrobiom przewodu pokarmowego człowieka stanowią grzyby, które są organizmami eukariotycznymi i heterotroficznymi, a ich populację określa się jako mykobiom [86]. Cechą charakterystyczną grzybów jest tworzenie sieci rozgałęzionych kanalikowych komórek, które tworzą grzybnię oraz występowanie w ich ścianie komórkowej ergosterolu jako substancji przypominającej cholesterol błon komórkowych ssaków oraz chitynę (30, 78, 97). Grzyby tworzą także mikroskopijne, odporne na czynniki zewnętrzne, zarodniki o wielkości od 3 do 30 mikronów, służące do ich rozprzestrzeniania i pełniące rolę propaguli, cechujące się dużą różnorodnością kształtów oraz pigmentacją [30, 78, 97]. Rozmnażanie grzybów może być bezpłciowe i zachodzi przez fragmentację grzybni, bądź poprzez wytwarzanie zarodników lub na drodze blastokonidiogenezy zwanej potocznie pączkowaniem oraz płciowe odbywające się poprzez zlewanie się ze sobą różnoimiennych strzępek grzybni [78]. Mykobiom ludzkiego przewodu pokarmowego i w stosunku do bakteriomu stanowi tylko około 0,03–2% mikroorganizmów, stąd określa się go jako “rzadką biosferę” w ludzkim mikrobiomie [73, 109]. Niemniej jednak, wpływa on na homeostazę makroorganizmu [36, 111], mimo że charakteryzuje się mniejszym zróżnicowaniem w stosunku do bakterii i wirusów [109]. Komórki grzybów ze względu na to, że są około 100 razy większe niż komórki bakteryjne, mimo mniejszej ich ilości, stwarzają stosunkowo dużą biomasę [73, 80].

Mikroorganizmy przewodu pokarmowego człowieka

Mikrobiom przewodu pokarmowego człowieka, to jest jamy ustnej, gardła, przełyku, żołądka, jelita cienkiego i grubego, tworzy swoisty jakościowo-ilościowy bogaty i zróżnicowany, swoisty ekosystem [96]. Jest on nadal ciągle poznawany i wzbogacany wiadomościami z zakresu jego nowych “elementów” w wyniku stosowania metod bioinformatycznych, molekularnych oraz sekwencjonowania metagenomowego, które to metody umożliwiają lepszą jego analizę [1, 17, 61, 102, 110].

Bakterie, archeony, wirusy i grzyby występujące w jamie ustnej

Jama ustna stanowi początek przewodu pokarmowego człowieka i jest ona bogata w mikroorganizmy (tab. I), gdyż stwierdzono w niej m.in. ponad 700 gatunków bakterii, czemu sprzyja stała jej wilgotność dzięki gruczołom wydzielającym ślinę o pH 6,5–7,0 oraz temperaturze około 37°C [50]. Jama ustna jako odcinek przewodu pokarmowego, „składa” się z warstwy skóry pokrytej nabłonkiem wielowarstwowym płaskim nierogowaciejącym, warg, języka, podniebienia i zębów co tworzy zróżnicowany biotop warunkowany odmiennymi warunkami dla społeczności drobnoustrojów [50]. Wskazuje się, że ze względu na spełnianie odpowiednich wymogów dla mikroorganizmów, środowisko jamy ustnej jest drugim wymieninaym pod względem obfitości odcinkiem przewodu pokarmowego po jelitach [1]. Wpływa na to także fakt, że organizm noworodka ssaka jest kolonizowany przez mikroorganizmy z dróg rodnych matki podczas porodu naturalnego [23]. Dodać należy, że pomimo iż większość drobnoustrojów jelitowych początkowo dostaje się do organizmu człowieka przez jamę ustną, biotop jamy ustnej i jelit, dzieli wiele typowych dla siebie mikroorganizmów [50]. Bakterie obecne w jamie ustnej człowieka tworzą tzw. biofilm oralny, czyli ustrukturyzowaną społeczność komórek bakteryjnych (tab. I), wśród których pierwszymi są m.in. bakterie z gatunku Streptococcus [92]. Kompozycja bakterii w biofilmie oralnym różni się jak wspomniano w zależności od lokalizacji, jako że bakterie, np. występujące na płytce nazębnej, różnią się od tych, które znajdują się na grzbiecie języka [108]. W jamie ustnej najczęściej występującymi bakteriami są Streptococcus sp., które występują w 65% na błonie śluzowej, w 66% na zrogowaciałej części dziąseł i w 40% na powierzchni podniebienia twardego [14]. W tej części przewodu pokarmowego stwierdza się aż ponad 65% filotypów bakterii, w tym typowych dla biotopu w żołądku [84]. Natomiast mikrobiom śliny zawiera 51% Proteobacteria i 9% bakterii z gromady Bacteroidota [38], choć wg Jebba i wsp. [53] dominującymi gatunkami bakterii w ślinie są Neisseria perflava i Rothia mucilaginosa. W ślinie w tym biotopie wykryto także bakterie typowe dla mikrobiomu skóry, należące do rodziny: Staphylococcaceae, Propionibacteriaceae, Burkholderiaceae, Neisseriaceae i Fusobacteriaceae [72], a na zębach bakterie Gram-dodatnie takie jak, np: Actinomyces sp., Streptococcus (S.) sanguinis, S. mutans i S. oralis [22]. Jamę ustną kolonizują także bogate populacje archeonów, wirusów i grzybów (tab. I). W składzie mikrobiomu jamy ustnej stwierdza się w największej ilości bakterie, ale także bogato reprezentowane są wirusy, archeony i grzyby (tab. I).

Bakterie, archeony, wirusy i grzyby, reprezentujące różne grupy systematyczne występujące w jamie ustnej

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Firmicutes (obecnie Bacillota), Fusobacteria, Proteobacteria, Actinobacteria, Bacteroidota, Chlamydiae, Chloroflexi, Spirochaetes, Synergistetes, Saccharibacteria, Gracilibacteria.Rodzina: Staphylococcaceae, Propionibacteriaceae, Burkholderiaceae, Neisseriaceae, Fusobacteriaceae.Gatunek: Streptococcus (S) sanguinis, S. mutans, S. oralis, Veillonella sp., Granulicatella sp., Gamella sp., Actinomyces sp., Corynebacterium sp., Fusobacterium sp., Porphyromonas sp., Prevotella sp., Capnocytophaga sp., Haemophilus sp., Treponema sp., Lactobacterium sp., Eikenella sp., Leptotrichia sp., Peptostreptococcus sp., Staphylococcus sp., Eubacteria sp., Pseudoramibacter sp., Propionibacterium sp., Moraxella sp., Campylobacter sp., Desulfobacter sp., Desulfovibrio sp., Fusobacterium sp., Selemonas sp., Simonsiella sp., Wolinella sp., Neisseria perflava, Rothia mucilaginosa.[14, 23, 38, 46, 53, 72, 84, 86, 92, 117]
ArcheonyRząd: Thermoplasmatales.Gatunek: Methanobrevibacter (Mbb.) sp., w tym: Mbb. oralis, Mbb. smithii, Methanobacterium sp., Methanosarcina sp., Methanosphaera sp., Candidatus Nitrososphaera evargladensis, Methanomassilicoccus luminyensis.[8, 26, 49, 118]
WirusyRząd: Caudovirales.Rodzina: Herpesviridae, Papillomaviridae, Anelloviridae, Siphoviridae, Myoviridae.Gatunek: bakteriofagi dla bakterii z rodzaju Streptococcus, Veillonella, Escherichia, Bulkholderia, Salmonella, Megasphaer, Roseolovirus oraz wirusy: Human cytomegalovirus, Herpes simplex virus, Coxsackievirus A5, Enterovirus A, wirus Epstein-Barr.[45, 47, 74, 88, 92, 118]
GrzybyRząd: Saccharomycetales.Rodzaj: Candida, Cladosporium, Aureobasidium, Aspergillus, Fusarium, Cryptococcus, Alternaria, Malassezia.Gatunek: Candida albicans.[1, 6, 14, 23, 45, 80, 118]
Bakterie, wirusy i grzyby występujące w gardle

Ten odcinek przewodu pokarmowego człowieka dzieli się na trzy to jest: nosowy, ustny i krtaniowy i stanowi połączenie dwóch układów, oddechowego i pokarmowego, w którym stwierdzono, że największą populację wśród mikroorganizmów stanowią bakterie (tab. II) głównie z gromady Bacteroidota (27%), które występują o wiele liczniej, niż w innych odcinkach przewodu pokarmowego [38]. Badania metagenomiczne mikrobioty nosogardzieli wykazały, że jest obfita także w wirusy DNA i RNA oraz bakteriofagi (tab. I). Nie stwierdzono w tym biotopie obecności archeonów [86]. Skromne są też informacje dotyczące populacji grzybów, bo stwierdzono jedynie grzyby z rodzaju Candida (tab. II).

Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w gardle

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Bacteroidota, Proteobacteria, Firmicutes, Actinobacteria i Fusobacteria.Rodzaj: Staphylococcus. Prevotella, Capnocytophaga, Campylobacter, Veillonella, Streptococcus, Neisseria oraz Haemophilus.Gatunek: Streptococcus viridans, Branhamella catarrhalis, Neisseria sp., Haemophilus sp.[35, 38, 72]
ArcheonyBrak danych.
WirusyGatunek: Koronawirusy, adenowirusy, pikornawirusy, wirus RSV, wirus grypy A, bakteriofagi.[31]
GrzybyRodzaj: Candida.[34]
Bakterie, archeony, wirusy i grzyby występujące w przełyku

W tym odcinku przewodu pokarmowego tak jak w gardle, stwierdza się bakterie, wirusy i grzyby i archeony (tab. III). Stosunek ilościowy bakterii gatunku Streptococcus sp. do Prevotella sp. w tym biotopie, jest ważną cechą definiującą do jakiego typu społeczności mikroorganizmów kwalifikuje się przełyk danej osoby [27, 69]. U ludzi zdrowych w przełyku dominują bakterie Gram-dodatnie, w tym z gromady Firmicutes oraz bakterie z rodzaju Streptococcus [27, 69]. Przyjmuje się, że u osób chorych przeważają bakterie Gram-ujemne, bo ich ilość wynosi ponad 50%, wśród których najwięcej jest bakterii rodzaju Veillonella, Prevotella, Haemophilus, Neisseria, Granulicatella oraz Fusobacterium i ich liczba koreluje dodatkowo z zapaleniem przełyku i przełykiem Barretta [27, 69]. Analizując mikrobiom tego odcinka przewodu pokarmowego należy stwierdzić że bakteriei wirusy stanowią największą liczbę, zaś grzyby i archeony są reprezentowane nielicznie. (tab. III).

Bakterie, archeony, grzyby i wirusy reprezentujące różne grupy systematyczne występujące w przełyku

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Fusobacteria.Rodzaj: Streptococcus, Veillonella, Prevotella, Haemophilus, Neisseria, Granulicatella i Fusobacterium.Gatunek: Streptococcus viridans, Streptococcus faecalis, Haemophilus influenzae, Neisseria catarrhalis, Klebsiella pneumonia.[27, 45, 69, 77, 89]
ArcheonyRodzaj: Halobacteria, Methanosarcina.[27]
WirusyRodzina: Herpesviridae (Betaherpesvirus, Gammaherpesvirus), Papillomaviridae, Gammapapillomavirus).Gatunek: bakteriofagi rodzaju Streptococcus, Campylobacter, Lactococcus i γ-Proteobacterii.[27]
GrzybyGatunek: Candida (C.) albicans, C. glabrata, Saccharomyces cerevisiae.[27]
Bakterie, archeony i grzyby występujące w żołądku

Żołądek, w porównaniu z jelitami, jest stosunkowo dość ubogi w mikroorganizmy, co wynika z bardzo niskiego pH w tym biotopie i występującym kwasem solnym, który jest w stanie wyeliminować większość gatunków zarazków [22] (tab. IV). Niektóre mikroorganizmy są w stanie przetrwać warunki, w których pH waha się w granicach 1–3 [17, 84]. Uważa się, że liczba mikroorganizmów żołądka waha się od 102 do 104 CFU/g [51] i najliczniej reprezentują ją bakterie należące do 5 gromad, 1 rodziny, 23 rodzajów oraz 6 gatunków bakterii (tab. IV). Drugą pod względem liczby najliczniejszą grupę mikroorganizmów w żołądku tworzą grzyby, które reprezentują 7 gromad, 4 rodziny, 5 rodzajów i 3 gatunki (tab. IV). W tym biotopie ale tylko u nowo narodzonych dzieci, stwierdza się archeony z gatunku Methanobrevibacter smithii [43]. Nie opisano występowania w żołądku wirusów (tab. IV).

Bakterie, archeony i grzyby reprezentujące różne grupy systematyczne występujące w żołądku

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Firmicutes, Bacteroidota, Proteobacteria, Actinobacteria, Fusobacteria.Rodzina: Enterobacteriaceae.Rodzaj: Lactobacillus, Streptococcus, Staphylococcus, Bacteroides, Veillonella, Corynebacterium, Clostridium, Neisseria, Stomatococcus, Prevotella, Rothia, Haemophilus, Atopobium, Porphyromonas, Gamella, Helicobacter, Propionibacterium, Fusobacterium, Achromobacter, Rhodococcus, Micrococcus, Bacillus, Actinobacillus.Gatunek: Helicobacter pylori, Campylobacter pyloridis, Fusobacterium nucleatum, Lactobacillus (L.) lactis, L. brevis, L. johnsonii.[17, 45, 71, 84, 87, 94, 119, 120]
ArcheonyGatunek: Methanobrevibacter smithii.[43]
WirusyBrak danych.
GrzybyGromada: Ascomycota, Basidiomycota,Klasa: Saccharomycetes, Dothideomycetes, Eurotiomycetes, Agaricomycetes, Tremellomycetes.Rodzina: Aspergillaceae, Chaetomiaceale, Pleosporaceae, Trimorphomycetaceae.Rodzaj: Candida, Phialemonium, Alternaria, Thermomyces, Saitozyma.Gatunek: Candida albicans, Aspergillus montevidensis, Penicillium arenicola.[45, 119, 120]
Bakterie, wirusy i grzyby występujące w jelicie cienkim

Ten odcinek przewodu pokarmowego człowieka stanowi jego najdłuższą część która wynosi od 3 do 5 metrów i składa się z dwunastnicy, jelita czczego i jelita krętego [18, 48]. Wśród mikroorganizmów tego odcinka są bardzo licznie reprezentowane bakterie oraz bardzo mało stwierdzono wirusów i grzybów (tab. V). Szczególnie w tym odcinku przewodu pokarmowego funkcje mikroorganizmów są powiązane z układem odpornościowym, ponieważ „zamieszkujące” go zarazki oddziaływają bardzo istotnie na układ odpornościowy – GALT (gut-associated lymphoid tissue) w tym MALT (mucosal associated lymhpoid tissue). Nadto biorą one udział w regulacji procesów komórek nabłonkowych jelit, ochronie przed działaniem szkodliwych mikroorganizmów oraz są czynnikami usposabiającymi w adaptacji gospodarza do zmian lipidowych wywodzącymi się z diety, a także oddziaływują na wchłaniania i trawienie [48, 75]. Ich liczna obecność w tym biotopie warunkowana jest tym, że gruczoły umiejscowione w śluzówce jelit, wydzielają zasadowy śluz, a gruczoły wewnętrznego wydzielania sok jelitowy co sprawia, że m.in. pH tego odcinka przewodu pokarmowego tworzy odpowiednie warunki bytowania dla tych mikroorganizmów [17]. Także wydzielana przez wątrobę do dwunastnicy żółć i zawarte w niej kwasy żółciowe oddziałują pozytywnie na tą mikroflorę [18, 95, 96]. Wśród bytujących w jelitach cienkich mikroorganizmów, głównymi zarazkami kolonizującymi ten biotop, tuż po urodzeniu, są bakterie, choć w okresie 1–4 miesięcy życia pojawiają się także wirusy [85]. Wykazano, że jelita człowieka mające 200–300 m2 błony śluzowej, stanowią „tajemniczy ogród” około dziesięciu milionów różnorodnych mikroorganizmów symbiotycznych [1, 71, 114]. Bogactwo mikroorganizmów występujących w jelicie cienkim (tab. V) jest uzależnione m.in. od takich czynników, jak rodzaj spożywanego pokarmu czy też warunków życia, w tym przyjmowanie chemioterapeutyków [88]. Wśród bakterii w jelicie cienkim występują głównie bakterie z gromady Firmicutes, Proteobacteria i Verrucomicrobia, zaś w dwunastnicy bakterie z gromady Firmicutes wynoszą 55%, a z gromady Proteobacteria 21% wszystkich mikroorganizmów [75, 107]. W jelitach oprócz tych trzech gromad bakterii i innych bakterii zarejestrowano także bakterie reprezentując wiele rodzajówi gatunków, a także wykazano występowanie 4 rodzajów wirusów i 2 rodzajów grzybów ale nie opisano występowania archeonów (tab. V).

Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie cienkim

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Firmicutes, Proteobacteria, Verrucomicrobia, Bacterioidota, Actinobacteria.Rodzina: Enterobacteriaceae, Lactobacillaceae.Rodzaj: Fusobacterium, Enterococcus, Klebsiella, Bacteroides, Ruminococcus, Streptococcus, Lactobacillus, Staphylococcus, Bifidobacterium, Veillonella, Porphyromonas, Prevotella, Clostridium, Corynebacterium, Providencia, Pseudomonas, Actinomyces, Atopobium, Gemella, Granulicatella, Haemophilus, Leptotrichia, Megasphaera, Neisseria, Porphyromonas, Paraprevotellaceae, Escherichia, Rothia, Citrobacter, Lachnoclostridium, Actinobacillus, Parascardovia, Oribacterium, Granulicatella, Campylobacter, Ralstonia.Gatunek: Escherichia coli, Neisseria cinerea, Prevotella (P.) melaninogenica, P. jejuni, P. veroralis, P. aurantiaca, Haemophilus parahaemolyticus, Porphyromonas pasteri, Porphyromonas endodontalis, Fusobacterium nucleatum, Moglibacterium neglectum, Alloprevotella tannerae, Filifactor alocis, Morococcus cerebrosus, Veillonella montpellierensis, Streptobacillus hongkongensis, Clostridium leptum.[11, 17, 21, 45, 57, 64, 75, 94, 99, 101, 105, 106, 107]
ArcheonyBrak danych.
WirusyRodzaj: Rotavirus, Calicivirus, Coronavirus, Adenovirus.[9]
GrzybyRodzaj: Candida, Saccharomyces.[45]
Bakterie, archeony, wirusy i grzyby występujące w jelicie grubym

Ten odcinek przewodu pokarmowego – jelito grube jest najbogatszy w stosunku do zasobów mikroorganizmów bytujących w innych odcinkach przewodu pokarmowego i największą liczbę rejestruje się w kątnicy, okrężnicy, wyrostku robaczkowym i odbytnicy [56, 94] i ich różnorodność jest całkiem odmienna w stosunku do jelita cienkiego [75] (tab. VI). Mikroorganizmy tego odcinka przewodu pokarmowego, cechują się ogromną różnorodnością i stanowią aż 0,15 kg biomasy jelita grubego [20] (tab. VI). Mikrobiom tego odcinka warunkuje reakcję rozkładu i fermentacji cukrów, uczestniczy we wchłanianiu niestrawionych resztek pokarmowych, a także zarazki te są w stanie syntezować witaminy i dzięki temu można ten odcinek przewodu pokarmowego, przyrównać do swoistego bioreaktora [50, 56, 71, 82]. Reakcje w tym odcinku powodują także, że spada stężenie tlenu, a nawetilości związków przeciwdrobnoustrojowych, co prowadzi do zwiększonej różnorodności mikroorganizmów, stąd wskazuje się, że występuje w tym biotopie z około 100 bilionów drobnoustrojów [71, 102, 103]. Większość z nich to beztlenowce, bo ich pokarmem, czyli głównym źródłem węgla jest błonnik, który za pomocą tych drobnoustrojów ulega procesowi fermentacji [70]. Ze względu na rodzaj spożywanego pokarmu wyróżnia się trzy enterotypy jelita grubego (tab. VII).

Bakterie, archeony, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie grubym

Populacje mikroorganizmówPiśmiennictwo
BakterieGromada: Bacteroidota, Fiumicutes, Actinobacteria, Proteobacteria, Verrucomicrobia.Rodzina: Enterobacteriaceae, Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, Ruminococcaceae.Rodzaj: Bacteroides, Enterococcus, Eubacterium, Clostridium, Peptostreptococcus, Streptococcus, Bifidobacterium, Fusobacterium, Lactobacillus, Prevotella, Ruminococcus, Akkermansia, Roseburia, Butyrivibrio, Lachnospira, Faecalibacterium.[1, 17, 45, 46, 91, 94, 103]
ArcheonyGromada: Crenarchaeota, Traumarcheota.Gatunek: Methanobrevibacter (M.) smithii. M. stadtmanae, M. luminyensis, Halorubrum (H.) koreense, H. alimentarium, H. saccharovorum, Halococcus morrhuae, Halopherax massiliense, Methanomassiliicoccales sp., Nitrosphaera sp., Sulfobolus sp.[26, 76, 94, 113]
WirusyRząd: Caudovirales.Rodzina: Podoviridae, Picornaviridae, Picobirnaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Anelloviridae, Cycloviridae, Parvoviridae, Retroviridae, Pneumoviridae, Herpesviridae, Hepadnaviridae i Microviridae.Rodzaj: Enterovirus, Rotavirus, Norovirus, Papillomavirus, Polyomavirus, Mimivirus, Marseillevirus.Gatunek: bakteriofagi bakterii rodzaju Bacteroides, Firmicutes i Actinobacteria.[17, 19, 45, 76, 85, 108, 115]
GrzybyGromada: Ascomycota, Basidiomycota, Mucoromycota.Rodzina: Cystofilobasidiaceae.Rodzaj: Saccharomyces, Malassezia, Candida, Penicillium, Cladosporium, Galactomyces, Cryptococcus, Aspergillus, Pichia, Mucor, Eurotium, Rhodotorula, Trichosporon.Gatunek: Beauveria bassiana, Lichtheimia ramosa, Clavispora lusitaniae, Galactomyces geotrichum, Isaria farinosa, Pleurostomophora richardsiae, Rhodosporidium kratochvilovae, Torulaspora delbrueckii, Yarrowia lipolytica, Aspergillus clavatus, Alternalia brassicola, Saccharomyces cerevisiae, Geotrichum sp., Cystofilobasidium sp.[16, 17, 45, 52, 76, 80, 109]

Enterotypy jelita grubego [20, 51, 87]

Dominujące rodzaje bakteriiDieta
Enterotyp 1BacteroidesDieta typu bogata w tłuszcze zwierzęce i białko
Enterotyp 2PrevotellaDieta wysokobłonnikowa (roślinna)
Enterotyp 3RuminococcusDieta bogata w skrobię

W mikrobiomie jelita grubego stwierdza się także liczne gatunki archeonów, które w przeciwieństwie do bakterii, grzybów i wirusów są specyficzne tylko dla tej niszy (tab. VI). Tę bogatą mikroflorę jelita grubego reprezentuje 5 gromad, 6 rodzin, 15 rodzajów bakterii i 2 gromady i 11 gatunków archeonów, a także wirusy należące do 1 rzędu, 15 rodzin w tym przedstawicieli rodziny wirusów olbrzymich (Microviridae), 7 rodzajów i 3 gatunki bakteriofagów (tab. VI). Podaje się także, że gram treści jelita grubego może zawierać nawet 108–109 wirusowych cząsteczek, z których większość to bakteriofagi z rodziny Podoviridae [115]. Grzyby w tym biotopie są bardzo licznie reprezentowane i pochodzą z 3 gromad, 1 rodziny, 13 rodzajów i 13 gatunków i które stanowią tylko 0,1% wszystkich drobnoustrojów w całych jelitach.

Podsumowanie

Mikrobiom przewodu pokarmowego człowieka pod względem jego elementów składowych (bakterii, archeonów, wirusów i grzybów) w jego poszczególnych odcinkach jest bardzo zróżnicowany. Najliczniej reprezentowaną jego składową są bakterie, a najuboższą zarówno w kontekście ilościowym i jakościowym archeony. Wirusy reprezentowane są w tym biotopie w ilościach pośrednich między bakteriami, a grzybami. Natomiast rozpatrując ich ilości w poszczególnych odcinkach przewodu pokarmowego, najbardziej obfitym w gatunki mikrobiomem jest środowisko jelita grubego i jamy ustnej, a najuboższym gardło i przełyk (tab. I–VII). Wśród mikrobiomu przewodu pokarmowego bakterie występują we wszystkich jego odcinkach, z tym że reprezentowane najliczniej są w jamie ustnej i jelicie cienkim, zaś najmniej w gardle i przełyku, natomiast archeony najliczniej zostały opisane w jelicie grubym i jamie ustnej, a nie stwierdzono ich w gardle i w jelicie cienkim. W przypadku wirusów stwierdza się, że najliczniej reprezentują one odcinek jelicie grubego oraz jamę ustną, a nie stwierdzono ich w żołądku, natomiast grzyby są najobficiej stwierdzane w jelicie grubym i żołądku, a najmniej w gardle i jelicie cienkim.

Bakterie, archeony i grzyby reprezentujące różne grupy systematyczne występujące w żołądku

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Firmicutes, Bacteroidota, Proteobacteria, Actinobacteria, Fusobacteria.Rodzina: Enterobacteriaceae.Rodzaj: Lactobacillus, Streptococcus, Staphylococcus, Bacteroides, Veillonella, Corynebacterium, Clostridium, Neisseria, Stomatococcus, Prevotella, Rothia, Haemophilus, Atopobium, Porphyromonas, Gamella, Helicobacter, Propionibacterium, Fusobacterium, Achromobacter, Rhodococcus, Micrococcus, Bacillus, Actinobacillus.Gatunek: Helicobacter pylori, Campylobacter pyloridis, Fusobacterium nucleatum, Lactobacillus (L.) lactis, L. brevis, L. johnsonii. [17, 45, 71, 84, 87, 94, 119, 120]
Archeony Gatunek: Methanobrevibacter smithii. [43]
Wirusy Brak danych.
Grzyby Gromada: Ascomycota, Basidiomycota,Klasa: Saccharomycetes, Dothideomycetes, Eurotiomycetes, Agaricomycetes, Tremellomycetes.Rodzina: Aspergillaceae, Chaetomiaceale, Pleosporaceae, Trimorphomycetaceae.Rodzaj: Candida, Phialemonium, Alternaria, Thermomyces, Saitozyma.Gatunek: Candida albicans, Aspergillus montevidensis, Penicillium arenicola. [45, 119, 120]

Bakterie, archeony, wirusy i grzyby, reprezentujące różne grupy systematyczne występujące w jamie ustnej

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Firmicutes (obecnie Bacillota), Fusobacteria, Proteobacteria, Actinobacteria, Bacteroidota, Chlamydiae, Chloroflexi, Spirochaetes, Synergistetes, Saccharibacteria, Gracilibacteria.Rodzina: Staphylococcaceae, Propionibacteriaceae, Burkholderiaceae, Neisseriaceae, Fusobacteriaceae.Gatunek: Streptococcus (S) sanguinis, S. mutans, S. oralis, Veillonella sp., Granulicatella sp., Gamella sp., Actinomyces sp., Corynebacterium sp., Fusobacterium sp., Porphyromonas sp., Prevotella sp., Capnocytophaga sp., Haemophilus sp., Treponema sp., Lactobacterium sp., Eikenella sp., Leptotrichia sp., Peptostreptococcus sp., Staphylococcus sp., Eubacteria sp., Pseudoramibacter sp., Propionibacterium sp., Moraxella sp., Campylobacter sp., Desulfobacter sp., Desulfovibrio sp., Fusobacterium sp., Selemonas sp., Simonsiella sp., Wolinella sp., Neisseria perflava, Rothia mucilaginosa. [14, 23, 38, 46, 53, 72, 84, 86, 92, 117]
Archeony Rząd: Thermoplasmatales.Gatunek: Methanobrevibacter (Mbb.) sp., w tym: Mbb. oralis, Mbb. smithii, Methanobacterium sp., Methanosarcina sp., Methanosphaera sp., Candidatus Nitrososphaera evargladensis, Methanomassilicoccus luminyensis. [8, 26, 49, 118]
Wirusy Rząd: Caudovirales.Rodzina: Herpesviridae, Papillomaviridae, Anelloviridae, Siphoviridae, Myoviridae.Gatunek: bakteriofagi dla bakterii z rodzaju Streptococcus, Veillonella, Escherichia, Bulkholderia, Salmonella, Megasphaer, Roseolovirus oraz wirusy: Human cytomegalovirus, Herpes simplex virus, Coxsackievirus A5, Enterovirus A, wirus Epstein-Barr. [45, 47, 74, 88, 92, 118]
Grzyby Rząd: Saccharomycetales.Rodzaj: Candida, Cladosporium, Aureobasidium, Aspergillus, Fusarium, Cryptococcus, Alternaria, Malassezia.Gatunek: Candida albicans. [1, 6, 14, 23, 45, 80, 118]

Bakterie, archeony, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie grubym

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Bacteroidota, Fiumicutes, Actinobacteria, Proteobacteria, Verrucomicrobia.Rodzina: Enterobacteriaceae, Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, Ruminococcaceae.Rodzaj: Bacteroides, Enterococcus, Eubacterium, Clostridium, Peptostreptococcus, Streptococcus, Bifidobacterium, Fusobacterium, Lactobacillus, Prevotella, Ruminococcus, Akkermansia, Roseburia, Butyrivibrio, Lachnospira, Faecalibacterium. [1, 17, 45, 46, 91, 94, 103]
Archeony Gromada: Crenarchaeota, Traumarcheota.Gatunek: Methanobrevibacter (M.) smithii. M. stadtmanae, M. luminyensis, Halorubrum (H.) koreense, H. alimentarium, H. saccharovorum, Halococcus morrhuae, Halopherax massiliense, Methanomassiliicoccales sp., Nitrosphaera sp., Sulfobolus sp. [26, 76, 94, 113]
Wirusy Rząd: Caudovirales.Rodzina: Podoviridae, Picornaviridae, Picobirnaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Anelloviridae, Cycloviridae, Parvoviridae, Retroviridae, Pneumoviridae, Herpesviridae, Hepadnaviridae i Microviridae.Rodzaj: Enterovirus, Rotavirus, Norovirus, Papillomavirus, Polyomavirus, Mimivirus, Marseillevirus.Gatunek: bakteriofagi bakterii rodzaju Bacteroides, Firmicutes i Actinobacteria. [17, 19, 45, 76, 85, 108, 115]
Grzyby Gromada: Ascomycota, Basidiomycota, Mucoromycota.Rodzina: Cystofilobasidiaceae.Rodzaj: Saccharomyces, Malassezia, Candida, Penicillium, Cladosporium, Galactomyces, Cryptococcus, Aspergillus, Pichia, Mucor, Eurotium, Rhodotorula, Trichosporon.Gatunek: Beauveria bassiana, Lichtheimia ramosa, Clavispora lusitaniae, Galactomyces geotrichum, Isaria farinosa, Pleurostomophora richardsiae, Rhodosporidium kratochvilovae, Torulaspora delbrueckii, Yarrowia lipolytica, Aspergillus clavatus, Alternalia brassicola, Saccharomyces cerevisiae, Geotrichum sp., Cystofilobasidium sp. [16, 17, 45, 52, 76, 80, 109]

Enterotypy jelita grubego [20, 51, 87]

Dominujące rodzaje bakterii Dieta
Enterotyp 1 Bacteroides Dieta typu bogata w tłuszcze zwierzęce i białko
Enterotyp 2 Prevotella Dieta wysokobłonnikowa (roślinna)
Enterotyp 3 Ruminococcus Dieta bogata w skrobię

Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w gardle

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Bacteroidota, Proteobacteria, Firmicutes, Actinobacteria i Fusobacteria.Rodzaj: Staphylococcus. Prevotella, Capnocytophaga, Campylobacter, Veillonella, Streptococcus, Neisseria oraz Haemophilus.Gatunek: Streptococcus viridans, Branhamella catarrhalis, Neisseria sp., Haemophilus sp. [35, 38, 72]
Archeony Brak danych.
Wirusy Gatunek: Koronawirusy, adenowirusy, pikornawirusy, wirus RSV, wirus grypy A, bakteriofagi. [31]
Grzyby Rodzaj: Candida. [34]

Bakterie, archeony, grzyby i wirusy reprezentujące różne grupy systematyczne występujące w przełyku

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Fusobacteria.Rodzaj: Streptococcus, Veillonella, Prevotella, Haemophilus, Neisseria, Granulicatella i Fusobacterium.Gatunek: Streptococcus viridans, Streptococcus faecalis, Haemophilus influenzae, Neisseria catarrhalis, Klebsiella pneumonia. [27, 45, 69, 77, 89]
Archeony Rodzaj: Halobacteria, Methanosarcina. [27]
Wirusy Rodzina: Herpesviridae (Betaherpesvirus, Gammaherpesvirus), Papillomaviridae, Gammapapillomavirus).Gatunek: bakteriofagi rodzaju Streptococcus, Campylobacter, Lactococcus i γ-Proteobacterii. [27]
Grzyby Gatunek: Candida (C.) albicans, C. glabrata, Saccharomyces cerevisiae. [27]

Bakterie, wirusy i grzyby reprezentujące różne grupy systematyczne występujące w jelicie cienkim

Populacje mikroorganizmów Piśmiennictwo
Bakterie Gromada: Firmicutes, Proteobacteria, Verrucomicrobia, Bacterioidota, Actinobacteria.Rodzina: Enterobacteriaceae, Lactobacillaceae.Rodzaj: Fusobacterium, Enterococcus, Klebsiella, Bacteroides, Ruminococcus, Streptococcus, Lactobacillus, Staphylococcus, Bifidobacterium, Veillonella, Porphyromonas, Prevotella, Clostridium, Corynebacterium, Providencia, Pseudomonas, Actinomyces, Atopobium, Gemella, Granulicatella, Haemophilus, Leptotrichia, Megasphaera, Neisseria, Porphyromonas, Paraprevotellaceae, Escherichia, Rothia, Citrobacter, Lachnoclostridium, Actinobacillus, Parascardovia, Oribacterium, Granulicatella, Campylobacter, Ralstonia.Gatunek: Escherichia coli, Neisseria cinerea, Prevotella (P.) melaninogenica, P. jejuni, P. veroralis, P. aurantiaca, Haemophilus parahaemolyticus, Porphyromonas pasteri, Porphyromonas endodontalis, Fusobacterium nucleatum, Moglibacterium neglectum, Alloprevotella tannerae, Filifactor alocis, Morococcus cerebrosus, Veillonella montpellierensis, Streptobacillus hongkongensis, Clostridium leptum. [11, 17, 21, 45, 57, 64, 75, 94, 99, 101, 105, 106, 107]
Archeony Brak danych.
Wirusy Rodzaj: Rotavirus, Calicivirus, Coronavirus, Adenovirus. [9]
Grzyby Rodzaj: Candida, Saccharomyces. [45]

Adak A., Khan M.R.: An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 76, 473–493, doi: 10.1007/s00018-018-2943-4 (2019) AdakA. KhanM.R. An insight into gut microbiota and its functionalities Cell. Mol. Life Sci. 76 473 493 10.1007/s00018-018-2943-4 2019 30317530 Open DOISearch in Google Scholar

Andrews J.H.: Comparative Ecology of Microorganisms and Macroorganisms – Second Edition. Springer, New York, doi: https://doi.org/10.1007/978-1-4939-6897-8 (2017) AndrewsJ.H. Comparative Ecology of Microorganisms and Macroorganisms Second Edition Springer New York doi: https://doi.org/10.1007/978-1-4939-6897-8 2017 10.1007/978-1-4939-6897-8 Search in Google Scholar

Anon.: Bacterial Transduction. https://bio.libretexts.org/@go/page/9298 (2021) Anon Bacterial Transduction https://bio.libretexts.org/@go/page/9298 2021 Search in Google Scholar

Azzouz L.L., Sharma S.: Physiology, Large Intestine. StatPearls Publishing https://pubmed.ncbi.nlm.nih.gov/29939634/ (2018) AzzouzL.L. SharmaS. Physiology, Large Intestine StatPearls Publishing https://pubmed.ncbi.nlm.nih.gov/29939634/ 2018 Search in Google Scholar

Baker B.J., De Anda V., Seitz K.W., Dombrowski N., Santoro A.E., Lloyd K.G.: Diversity, ecology and evolution of Archaea. Nat Microbiol. 5, 887–900, doi: 10.1038/s41564-020-0715-z (2020) BakerB.J. De AndaV. SeitzK.W. DombrowskiN. SantoroA.E. LloydK.G. Diversity, ecology and evolution of Archaea Nat Microbiol. 5 887 900 10.1038/s41564-020-0715-z 2020 32367054 Open DOISearch in Google Scholar

Bandara H.M.H.N., Panduwawala C.P., Samaranayake L.P.: Biodiversity of the human oral mycobiome in health and disease. Oral Dis. 25, 363–371, doi: 10.1111/odi.12899 (2019) BandaraH.M.H.N. PanduwawalaC.P. SamaranayakeL.P. Biodiversity of the human oral mycobiome in health and disease Oral Dis. 25 363 371 10.1111/odi.12899 2019 29786923 Open DOISearch in Google Scholar

Barrera-Vázquez O., Gomez-Verjan J.: The Unexplored World of Human Virome, Mycobiome, and Archaeome in Aging. The J. of Gerontology. 75, doi: 10.1093/gerona/glz274 (2019) Barrera-VázquezO. Gomez-VerjanJ. The Unexplored World of Human Virome, Mycobiome, and Archaeome in Aging The J. of Gerontology. 75 10.1093/gerona/glz274 2019 31802114 Open DOISearch in Google Scholar

Belmok A., de Cena J. A., Kyaw C. M., Damé-Teixeira N.: The Oral Archaeome: A Scoping Review. J Dent Res. 99, 630–643, doi: 10.1177/0022034520910435 (2020) BelmokA. de CenaJ. A. KyawC. M. Damé-TeixeiraN. The Oral Archaeome: A Scoping Review J Dent Res. 99 630 643 10.1177/0022034520910435 2020 32167855 Open DOISearch in Google Scholar

Bishop R.F., Kirkwood C.D.: Enteric Viruses. Encyclopedia of Virology.: 116–123, Elsevier, USA, doi: 10.1016/B978-012374410-4.00386-1, (2008) BishopR.F. KirkwoodC.D. Enteric Viruses. Encyclopedia of Virology. 116 123 Elsevier USA 10.1016/B978-012374410-4.00386-1 2008 Open DOISearch in Google Scholar

Bjorksten B.: The gut microbiota: a complex ecosystem. Clinical and Experimental Allergy. 36, 1215–1217, doi: 10.1111/j.1365-2222.2006.02579.x (2006) BjorkstenB. The gut microbiota: a complex ecosystem Clinical and Experimental Allergy. 36 1215 1217 10.1111/j.1365-2222.2006.02579.x 2006 17014427 Open DOISearch in Google Scholar

Booijink C.C., Zoetendal E.G., Kleerebezem M., de Vos W.M.: Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol. 2, 285–295, doi: 10.2217/17460913.2.3.285 (2007) BooijinkC.C. ZoetendalE.G. KleerebezemM. de VosW.M. Microbial communities in the human small intestine: coupling diversity to metagenomics Future Microbiol. 2 285 295 10.2217/17460913.2.3.285 2007 17661703 Open DOISearch in Google Scholar

Bosdriesz E., Molenaar D., Teusink B., Bruggeman F.J.: How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J. 282, 2029–2044, doi: 10.1111/febs.13258 (2015) BosdrieszE. MolenaarD. TeusinkB. BruggemanF.J. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization FEBS J. 282 2029 2044 10.1111/febs.13258 2015 467270725754869 Open DOISearch in Google Scholar

Camarillo-Guerrero L.F., Almeida A., Rangel-Pineros G., Finn R.D., Lawley T.D.: Massive expansion of human gut bacteriophage diversity. Cell. 184, 1098–1109, doi: 10.1016/j.cell.2021.01.029 (2021) Camarillo-GuerreroL.F. AlmeidaA. Rangel-PinerosG. FinnR.D. LawleyT.D. Massive expansion of human gut bacteriophage diversity Cell. 184 1098 1109 10.1016/j.cell.2021.01.029 2021 789589733606979 Open DOISearch in Google Scholar

Caselli E., Fabbri C., D’Accolti M., Soffritti I., Bassi C., Mazzacane S., Franchi M.: Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 20, doi: 10.1186/s12866-020-01801-y (2020) CaselliE. FabbriC. D’AccoltiM. SoffrittiI. BassiC. MazzacaneS. FranchiM. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture BMC Microbiol 20 10.1186/s12866-020-01801-y 2020 723636032423437 Open DOISearch in Google Scholar

Chabé M., Lokmer A., Ségurel L.: Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol. 33, 925–934, doi: 10.1016/j.pt.2017.08.005 (2017). ChabéM. LokmerA. SégurelL. Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends Parasitol. 33 925 934 10.1016/j.pt.2017.08.005 2017 28870496 Open DOISearch in Google Scholar

Chin V.K., Yong V.C., Chong P.P., Amin Nordin S., Basir R., Abdullah M.: Mycobiome in the Gut: A Multiperspective Review. Mediators Inflamm. doi: 10.1155/2020/9560684 (2020) ChinV.K. YongV.C. ChongP.P. Amin NordinS. BasirR. AbdullahM. Mycobiome in the Gut: A Multiperspective Review Mediators Inflamm. 10.1155/2020/9560684 2020 716071732322167 Open DOISearch in Google Scholar

Clarke G., Sandhu K.V., Griffin B.T., Dinan T.G., Cryan J.F., Hyland N.P.: Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol. Rev. 71, 198–224, doi: 10.1124/pr.118.015768 (2019) ClarkeG. SandhuK.V. GriffinB.T. DinanT.G. CryanJ.F. HylandN.P. Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions Pharmacol. Rev. 71 198 224 10.1124/pr.118.015768 2019 30890566 Open DOISearch in Google Scholar

Collins J.T., Nguyen A., Badireddy M.: Anatomy, Abdomen and Pelvis, Small Intestine. StatPearls Publishing, Treasue Island. (2021) CollinsJ.T. NguyenA. BadireddyM. Anatomy, Abdomen and Pelvis, Small Intestine StatPearls Publishing Treasue Island 2021 Search in Google Scholar

Colson P., Aherfi S., la Scola B.: Evidence of giant viruses of amoebae in the human gut. Human Microbiome J. 5–6, doi: 10.1016/j.humic.2017.11.001 (2017) ColsonP. AherfiS. la ScolaB. Evidence of giant viruses of amoebae in the human gut Human Microbiome J. 5 6 10.1016/j.humic.2017.11.001 2017 Open DOISearch in Google Scholar

Costea P.I., Hildebrand F., Arumugam M.: Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 3, 8–16, doi: 10.1038/s41564-017-0072-8 (2018) CosteaP.I. HildebrandF. ArumugamM. Enterotypes in the landscape of gut microbial community composition Nat Microbiol. 3 8 16 10.1038/s41564-017-0072-8 2018 583204429255284 Open DOISearch in Google Scholar

Cotter Paul D.: Small intestine and microbiota. Current Opinion in Gastroenterology. 27, 99–10, doi: 10.1097/MOG.0b013e328341dc67 (2011) Cotter PaulD. Small intestine and microbiota Current Opinion in Gastroenterology 27 99 10 10.1097/MOG.0b013e328341dc67 2011 21102323 Open DOISearch in Google Scholar

Coutts, A. M.: Review and discussion of the body’s normal microorganisms. Br. J. of Nursing. 15, 864–868, doi: 10.12968/bjon.2006.15.16.21850 (2006) CouttsA. M. Review and discussion of the body’s normal microorganisms Br. J. of Nursing. 15 864 868 10.12968/bjon.2006.15.16.21850 2006 17108857 Open DOISearch in Google Scholar

Cugini C., Ramasubbu N., Tsiagbe V.K., Fine D.H.: Dysbiosis From a Microbal and Host Perspective Realtive to Oral Health and Disease. Front Microbiol. 12, 1–23, doi. 10.3389/fmicb.2021.617485 (2021) CuginiC. RamasubbuN. TsiagbeV.K. FineD.H. Dysbiosis From a Microbal and Host Perspective Realtive to Oral Health and Disease Front Microbiol. 12 1 23 10.3389/fmicb.2021.617485 2021 798284433763040 Open DOISearch in Google Scholar

Cui L., Morris A., Ghedin E.: The human mycobiome in health and disease. Genome Med. 5, 63, doi: 10.1186/gm467 (2013) CuiL. MorrisA. GhedinE. The human mycobiome in health and disease Genome Med. 5 63 10.1186/gm467 2013 397842223899327 Open DOISearch in Google Scholar

D’A. F. Salvatore: The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta. 7, 97–102, doi: 10.1016/j.cca.2015.01.003 (2015) SalvatoreD’A. F. The role of the gut microbiome in the healthy adult status Clin. Chim. Acta. 7 97 102 10.1016/j.cca.2015.01.003 2015 25584460 Open DOISearch in Google Scholar

Demonfort Nkamga V., Henrissat B., Drancourt M.: Archaea: Essential inhabitants of the human digestive microbiota. Human Microbiome Journal. 3, 1–8, doi: 10.1016/j.humic.2016.11.005 (2017) Demonfort NkamgaV. HenrissatB. DrancourtM. Archaea: Essential inhabitants of the human digestive microbiota Human Microbiome Journal. 3 1 8 10.1016/j.humic.2016.11.005 2017 Open DOISearch in Google Scholar

Deshpande N.P., Riordan S.M., Castaño-Rodríguez N., Wilkins M.R., Kaakoush N.O.: Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 6, doi: 10.1186/s40168-018-0611-4 (2018) DeshpandeN.P. RiordanS.M. Castaño-RodríguezN. WilkinsM.R. KaakoushN.O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease Microbiome. 6 10.1186/s40168-018-0611-4 2018 629796130558669 Open DOISearch in Google Scholar

Dethlefsen L., McFall-Ngai M., Relman D.A.: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 449, 811–818, doi: 10.1038/nature06245 (2007) DethlefsenL. McFall-NgaiM. RelmanD.A. An ecological and evolutionary perspective on human-microbe mutualism and disease Nature. 449 811 818 10.1038/nature06245 2007 946403317943117 Open DOISearch in Google Scholar

Dethlefsen L., Relman DA.: Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA, doi: 10.1073/pnas.1000087107 (2011) DethlefsenL. RelmanDA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation Proc Natl Acad Sci USA 10.1073/pnas.1000087107 2011 306358220847294 Open DOISearch in Google Scholar

Dijksterhuis J.: Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage. Food Microbiol. 81, 2–11, doi: 10.1016/j.fm.2018.11.006 (2019) DijksterhuisJ. Fungal spores: Highly variable and stress-resistant vehicles for distribution and spoilage Food Microbiol. 81 2 11 10.1016/j.fm.2018.11.006 2019 30910084 Open DOISearch in Google Scholar

Duerkop B., Hooper L.: Resident viruses and their interactions with the immune system. Nat Immunol 14, 654–659, doi: 10.1038/ni.2614 (2013) DuerkopB. HooperL. Resident viruses and their interactions with the immune system Nat Immunol 14 654 659 10.1038/ni.2614 2013 376023623778792 Open DOISearch in Google Scholar

Efenberger M, Brzezińska-Błaszczyk E, Wódz K.: Archeony – drobnoustroje ciągle nieznane. Postepy Hig Med Dosw. 68, 1452–1463, doi: 10.5604/17322693.113169 (2014) EfenbergerM Brzezińska-BłaszczykE WódzK. Archeony – drobnoustroje ciągle nieznane Postepy Hig Med Dosw. 68 1452 1463 10.5604/17322693.113169 2014 Open DOISearch in Google Scholar

Efenberger M., Wódz K., Brzezińska-Błaszczyk E.: Archeony – istotny składnik mikrobiomu człowieka. Przegl. Lek. 71, 346–351 (2014) EfenbergerM. WódzK. Brzezińska-BłaszczykE. Archeony – istotny składnik mikrobiomu człowieka Przegl. Lek. 71 346 351 2014 Search in Google Scholar

Fenner F., Bachmann P.A., Gibbs E.P.J., Murphy F.A., Studdert M.J., White D.O.: Structure and Composition of Viruses. Veterinary Virology. 3–19, doi: 10.1016/B978-0-12-253055-5.50005-0 (2014) FennerF. BachmannP.A. GibbsE.P.J. MurphyF.A. StuddertM.J. WhiteD.O. Structure and Composition of Viruses Veterinary Virology. 3 19 10.1016/B978-0-12-253055-5.50005-0 2014 Open DOISearch in Google Scholar

Flynn M., Dooley J.: The microbiome of the nasopharynx. J Med Microbiol. 70, doi: 10.1099/jmm.0.001368 (2021) FlynnM. DooleyJ. The microbiome of the nasopharynx J Med Microbiol. 70 10.1099/jmm.0.001368 2021 845909534165422 Open DOISearch in Google Scholar

Forbes J.D., Bernstein C.N., Tremlett H., Van Domselaar G., Knox N.C.: A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol. 9, doi: 10.3389/fmicb.2018.03249 (2019) ForbesJ.D. BernsteinC.N. TremlettH. Van DomselaarG. KnoxN.C. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol. 9 10.3389/fmicb.2018.03249 2019 633368230687254 Open DOISearch in Google Scholar

Gaci N., Borrel G., Tottey W., O’Toole P.W., Brugère J.F.: Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 20, 16062–78, doi: 10.3748/wjg.v20.i43.16062 (2014) GaciN. BorrelG. TotteyW. O’TooleP.W. BrugèreJ.F. Archaea and the human gut: new beginning of an old story World J Gastroenterol. 20 16062 78 10.3748/wjg.v20.i43.16062 2014 423949225473158 Open DOISearch in Google Scholar

Gao Z., Kang Y., Yu J., Ren L.: Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genomics Proteomics Bioinformatics. 12, 144–150, doi: 10.1016/j.gpb.2014.06.001 (2014) GaoZ. KangY. YuJ. RenL. Human pharyngeal microbiome may play a protective role in respiratory tract infections Genomics Proteomics Bioinformatics. 12 144 150 10.1016/j.gpb.2014.06.001 2014 441133324953866 Open DOISearch in Google Scholar

Glare P.G.W.: Oxford Latin Dictionary. Oxford University Press/Clarendon Press, London (1982) GlareP.G.W. Oxford Latin Dictionary Oxford University Press/Clarendon Press London 1982 Search in Google Scholar

Glendinning L., Free A.: Supra-organismal interactions in the human intestine. Front Cell Infect Microbiol. 4, doi: 10.3389/fcimb.2014.00047 (2014) GlendinningL. FreeA. Supra-organismal interactions in the human intestine Front Cell Infect Microbiol. 4 10.3389/fcimb.2014.00047 2014 400594924795867 Open DOISearch in Google Scholar

Gould A.L., Zhang V., Lamberti L., Jones E.W., Obadia B., Korasidis N., Gavryushkin A., Carlson J.M., Beerenwinkel N., Ludington W.B.: Microbiome interactions shape host fitness. Proc Natl Acad Sci USA, 115, E11951–E11960, doi: 10.1073/pnas.1809349115 (2018) GouldA.L. ZhangV. LambertiL. JonesE.W. ObadiaB. KorasidisN. GavryushkinA. CarlsonJ.M. BeerenwinkelN. LudingtonW.B. Microbiome interactions shape host fitness Proc Natl Acad Sci USA 115 E11951 E11960 10.1073/pnas.1809349115 2018 630494930510004 Open DOISearch in Google Scholar

Gribaldo S., Brochier-Armanet C.: The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci. 361, 1007–1022, doi: 10.1098/rstb.2006.1841 (2006) GribaldoS. Brochier-ArmanetC. The origin and evolution of Archaea: a state of the art Philos Trans R Soc Lond B Biol Sci. 361 1007 1022 10.1098/rstb.2006.1841 2006 157872916754611 Open DOISearch in Google Scholar

Grine G., Boualam MA., Drancourt M.: Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach. Eur J Clin Microbiol Infect Dis. 36, 2449–2455, doi: 10.1007/s10096-017-3084-7 (2017) GrineG. BoualamMA. DrancourtM. Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach Eur J Clin Microbiol Infect Dis. 36 2449 2455 10.1007/s10096-017-3084-7 2017 28823095 Open DOISearch in Google Scholar

Han Y., Gong Z., Sun G., Xu J., Qi C., Sun W., Jiang H., Cao P., Ju H.: Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol. 12, 1–14, doi: 10.3389/fmicb.2021.680101 (2021) HanY. GongZ. SunG. XuJ. QiC. SunW. JiangH. CaoP. JuH. Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction Front Microbiol. 12 1 14 10.3389/fmicb.2021.680101 2021 829089534295318 Open DOISearch in Google Scholar

Hillman E.T, Kozik A.J., Hooker C.A., Burnett J.L., Heo Y., Kiesel V.A., Nevins C.J., Oshiro J.M.K.I., Robins M.M., Thakkar R.D., Wu S.T., Lindemann S.R.: Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genom. 6, doi: 10.1099/mgen.0.000399 (2020) HillmanE.T KozikA.J. HookerC.A. BurnettJ.L. HeoY. KieselV.A. NevinsC.J. OshiroJ.M.K.I. RobinsM.M. ThakkarR.D. WuS.T. LindemannS.R. Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species Microb Genom. 6 10.1099/mgen.0.000399 2020 747862532589566 Open DOISearch in Google Scholar

Hillman E.T., Lu H., Yao T., Nakatsu C.H.: Microbial Ecology along the Gastrointestinal Tract. Microbes. Environ. 32, 300–313, doi: 10.1264/jsme2.ME17017 (2017) HillmanE.T. LuH. YaoT. NakatsuC.H. Microbial Ecology along the Gastrointestinal Tract Microbes. Environ. 32 300 313 10.1264/jsme2.ME17017 2017 574501429129876 Open DOISearch in Google Scholar

Ho S.X., Min N., Wong E.P.Y.: Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth disease. npj Biofilms Microbiomes. 7, 1–8, doi: 10.1038/s41522-021-00190-y (2021) HoS.X. MinN. WongE.P.Y. Characterization of oral virome and microbiome revealed distinctive microbiome disruptions in paediatric patients with hand, foot and mouth disease npj Biofilms Microbiomes. 7 1 8 10.1038/s41522-021-00190-y 2021 789591633608551 Open DOISearch in Google Scholar

Hounnou G., Destrieux C., Desmé J., Bertrand P., Velut S.: “Anatomical study of the length of the human intestine”. Surgical and Radiologic Anatomy. 24, 290–294, doi: 10.1007/s00276-002-0057-y (2002) HounnouG. DestrieuxC. DesméJ. BertrandP. VelutS. “Anatomical study of the length of the human intestine” Surgical and Radiologic Anatomy. 24 290 294 10.1007/s00276-002-0057-y 2002 12497219 Open DOISearch in Google Scholar

Horz H.P., Conrads G.: Methanogenic Archaea and oral infections – ways to unravel the black box. J Oral Microbiol. doi: 10.3402/jom.v3i0.5940 (2011) HorzH.P. ConradsG. Methanogenic Archaea and oral infections – ways to unravel the black box J Oral Microbiol. 10.3402/jom.v3i0.5940 2011 308659321541092 Open DOISearch in Google Scholar

Horz H.P., Conrads G.: The discussion goes on: What is the role of Euryarchaeota in humans? Archaea. 1–8, doi: 10.1155/2010/967271 (2010) HorzH.P. ConradsG. The discussion goes on: What is the role of Euryarchaeota in humans? Archaea. 1 8 10.1155/2010/967271 2010 302186721253553 Open DOISearch in Google Scholar

Hunt RH, Yaghoobi M.: The Esophageal and Gastric Microbiome in Health and Disease. Gastroenterol Clin North Am. 46, 121–141, doi: 10.1016/j.gtc.2016.09.009 (2017) HuntRH YaghoobiM. The Esophageal and Gastric Microbiome in Health and Disease Gastroenterol Clin North Am. 46 121 141 10.1016/j.gtc.2016.09.009 2017 28164846 Open DOISearch in Google Scholar

Huseyin C.E., O’Toole P.W., Cotter P.D., Scanlan P.D.: Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev. 41, 479–511, doi: 10.1093/femsre/fuw047 (2017) HuseyinC.E. O’TooleP.W. CotterP.D. ScanlanP.D. Forgotten fungi-the gut mycobiome in human health and disease FEMS Microbiol Rev. 41 479 511 10.1093/femsre/fuw047 2017 28430946 Open DOISearch in Google Scholar

Iebba V., Zanotta N., Campisciano G.: Profiling of Oral Microbiota and Cytokines in COVID-19 Patients. Front Microbiol. 12, 1–13, doi: 10.3389/fmicb.2021.671813 (2021) IebbaV. ZanottaN. CampiscianoG. Profiling of Oral Microbiota and Cytokines in COVID-19 Patients Front Microbiol. 12 1 13 10.3389/fmicb.2021.671813 2021 836179434394024 Open DOISearch in Google Scholar

Jain S., Caforio A., Driessen A.J.: Biosynthesis of archaeal membrane ether lipids. Front Microbiol. 5, 1–16, doi: 10.3389/fmicb.2014.00641 (2014) JainS. CaforioA. DriessenA.J. Biosynthesis of archaeal membrane ether lipids Front Microbiol. 5 1 16 10.3389/fmicb.2014.00641 2014 424464325505460 Open DOISearch in Google Scholar

Jung A., Raßbach A., Pulpetta R.L.:. Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun. 10, 1–16, doi: 10.1038/s41467-019-11242-5 (2019) JungA. RaßbachA. PulpettaR.L. Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium Nat Commun. 10 1 16 10.1038/s41467-019-11242-5 2019 665043031337764 Open DOISearch in Google Scholar

Kahai P., Mandiga P., Wehrle C.J., Lobo S.: Anatomy, Abdomen and Pelvis, Large Intestine. StatPearls Publishing, Treasure Island (2020) KahaiP. MandigaP. WehrleC.J. LoboS. Anatomy, Abdomen and Pelvis, Large Intestine StatPearls Publishing Treasure Island 2020 Search in Google Scholar

Kastl A.J. Jr, Terry N.A., Wu G.D., Albenberg L.G.: The Structure and Function of the Human Small Intestinal Microbiota:Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol. 9, 33–45, doi: 10.1016/j.jcmgh.2019.07.006 (2020) KastlA.J.Jr TerryN.A. WuG.D. AlbenbergL.G. The Structure and Function of the Human Small Intestinal Microbiota:Current Understanding and Future Directions Cell Mol Gastroenterol Hepatol. 9 33 45 10.1016/j.jcmgh.2019.07.006 2020 688163931344510 Open DOISearch in Google Scholar

Kim J.Y., Whon T.W., Lim M.Y.: The human gut archaeome: identification of diverse haloarchaea in Korean subjects. Microbiome. 8, 114, doi: 10.1186/s40168-020-00894-x.96 (2020) KimJ.Y. WhonT.W. LimM.Y. The human gut archaeome: identification of diverse haloarchaea in Korean subjects Microbiome. 8 114 10.1186/s40168-020-00894-x.96 2020 Open DOISearch in Google Scholar

Koch A.L.: Control of the bacterial cell cycle by cytoplasmic growth. Crit Rev Microbiol. 28, 61–77, doi: 10.1080/1040-840291046696 (2002) KochA.L. Control of the bacterial cell cycle by cytoplasmic growth Crit Rev Microbiol. 28 61 77 10.1080/1040-840291046696 2002 12003041 Open DOISearch in Google Scholar

Koonin, E.V., Senkevich T.G., Dolja V.V.: The ancient Virus World and evolution of cells. Biology direct. 1, 1–27, doi: 10.1186/1745-6150-1-29 (2006) KooninE.V. SenkevichT.G. DoljaV.V. The ancient Virus World and evolution of cells Biology direct. 1 1 27 10.1186/1745-6150-1-29 2006 159457016984643 Open DOISearch in Google Scholar

Kosznik-Kwaśnicka K., Węgrzyn A. i wsp.: Biological aspects of phage therapy versus antibiotics against Salmonella enterica serovar Typhimurium infection of chickens. Front. Cell. Infect. Microbiol. 12:941867, doi. 10.3389/fcimb.2022.941867 (2022) Kosznik-KwaśnickaK. WęgrzynA. Biological aspects of phage therapy versus antibiotics against Salmonella enterica serovar Typhimurium infection of chickens Front. Cell. Infect. Microbiol. 12 941867 10.3389/fcimb.2022.941867 2022 938594935992162 Open DOISearch in Google Scholar

Brenner J. D., Krieg N.R., Staley J. T. Garrity G.M, Boone D.R., Vos P., Goodfellow M., Rainey F.A., Schleifer K-H.: Bergey’s Manual of Systematic Bacteriology: Volume Two: The Proteobacteria. US: Springer, Baltimore (2005) BrennerJ. D. KriegN.R. StaleyJ. T. GarrityG.M BooneD.R. VosP. GoodfellowM. RaineyF.A. SchleiferK-H. Bergey’s Manual of Systematic Bacteriology: Volume Two: The Proteobacteria US Springer, Baltimore 2005 10.1007/0-387-28022-7 Search in Google Scholar

Krug R.M., Wagner R.R.: “virus”. Encyclopedia Britannica, https://www.britannica.com/science/virus (2022) KrugR.M. WagnerR.R. “virus” Encyclopedia Britannica https://www.britannica.com/science/virus 2022 Search in Google Scholar

La Duc M.T., Dekas A., Osman S., Moiss l.C, Newcombe D., Venkateswaran K.: Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 73, 2600–2611, doi: 10.1128/AEM.03007-0 (2007) La DucM.T. DekasA. OsmanS. Moissl.C NewcombeD. VenkateswaranK. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments Appl. Environ. Microbiol. 73 2600 2611 10.1128/AEM.03007-0 2007 Open DOISearch in Google Scholar

Lecuit M., Eloit M.: The Viruses of the Gut Microbiota. Microbiota in Gastroindestinal Pathophysiology 21, 179–182 (2017) LecuitM. EloitM. The Viruses of the Gut Microbiota Microbiota in Gastroindestinal Pathophysiology 21 179 182 2017 10.1016/B978-0-12-804024-9.00021-5 Search in Google Scholar

Lederberg J., McCray A.T.: Ome Sweet ‘Omics – a genealogical treasury of words. Scientist, 15, 8 (2001) LederbergJ. McCrayA.T. Ome Sweet ‘Omics – a genealogical treasury of words Scientist, 15 8 2001 Search in Google Scholar

Leite G.G.S., Weitsman S., Parodi G.: Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Dig Dis Sci. 65, 2595–2604, doi: 10.1007/s10620-020-06173-x (2020) LeiteG.G.S. WeitsmanS. ParodiG. Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study Dig Dis Sci. 65 2595 2604 10.1007/s10620-020-06173-x 2020 741937832140945 Open DOISearch in Google Scholar

Luganini A., Gribaudo G.: Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution. Front Microbiol. 11, doi: 10.3389/fmicb.2020.01140 (2020) LuganiniA. GribaudoG. Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution Front Microbiol. 11 10.3389/fmicb.2020.01140 2020 727019532547531 Open DOISearch in Google Scholar

Lv J., Guo L., Liu J.J., Zhao H.P., Zhang J., Wang J.H.: Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma. World J Gastroenterol. 25, 2149–2161, doi: 10.3748/wjg.v25.i18.2149 (2018) LvJ. GuoL. LiuJ.J. ZhaoH.P. ZhangJ. WangJ.H. Alteration of the esophageal microbiota in Barrett’s esophagus and esophageal adenocarcinoma World J Gastroenterol. 25 2149 2161 10.3748/wjg.v25.i18.2149 2018 652615631143067 Open DOISearch in Google Scholar

Macfarlane G.T., Macfarlane S.: Fermentation in the Human Large Intestine. J. of Clinical Gastroenterology. 45, S120–S127, doi: 10.1097/MCG.0b013e31822fecfe (2011) MacfarlaneG.T. MacfarlaneS. Fermentation in the Human Large Intestine J. of Clinical Gastroenterology. 45 S120 S127 10.1097/MCG.0b013e31822fecfe 2011 21992950 Open DOISearch in Google Scholar

Malard F., Dore J., Gaugler B., Mohty M.: Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol. 14, 547–554, doi: 10.1038/s41385-020-00365-4 (2021) MalardF. DoreJ. GauglerB. MohtyM. Introduction to host microbiome symbiosis in health and disease Mucosal Immunol. 14 547 554 10.1038/s41385-020-00365-4 2021 772462533299088 Open DOISearch in Google Scholar

Malinowska M., Tokarz-Deptuła B.. Deptuła W.: Mikrobiom układu oddechowego w warunkach fizjologicznych i patologicznych. Post. Mikrobiol. 55, 279–283 (2015) MalinowskaM. Tokarz-DeptułaB. DeptułaW. Mikrobiom układu oddechowego w warunkach fizjologicznych i patologicznych Post. Mikrobiol. 55 279 283 2015 Search in Google Scholar

Mar Rodríguez M., Real J.M. i wsp.: Obesity changes the human gut mycobiome. Sci Rep. 5, 1–14, doi: 10.1038/srep14600 (2015) Mar RodríguezM. RealJ.M. Obesity changes the human gut mycobiome Sci Rep. 5 1 14 10.1038/srep14600 2015 460097726455903 Open DOISearch in Google Scholar

Martínez A., Kuraji R., Kapila Y.: The human oral virome: Shedding light on the dark matter. Periodontology 2000. 87, 282–298, doi: 10.1111/prd.12396 (2021) MartínezA. KurajiR. KapilaY. The human oral virome: Shedding light on the dark matter Periodontology 2000. 87 282 298 10.1111/prd.12396 2021 845707534463988 Open DOISearch in Google Scholar

Martinez-Guryn K., Hubert N., Frazier K., Urlass S., Musch M.W., Ojeda P., Pierre J.F., Miyoshi J., Sontag T.J., Cham C.M., Reardon C.A., Leone V., Chang E.B.: Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe. 23, 458–469, doi: 10.1016/j.chom.2018.03.011 (2018) Martinez-GurynK. HubertN. FrazierK. UrlassS. MuschM.W. OjedaP. PierreJ.F. MiyoshiJ. SontagT.J. ChamC.M. ReardonC.A. LeoneV. ChangE.B. Small Intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids Cell Host Microbe. 23 458 469 10.1016/j.chom.2018.03.011 2018 591269529649441 Open DOISearch in Google Scholar

Matijašić M., Meštrović T., Paljetak H.Č., Perić M., Barešić A., Verbanac D.: Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. Int J Mol Sci. 21, 1–21, doi: 10.3390/ijms21082668 (2020) MatijašićM. MeštrovićT. PaljetakH.Č. PerićM. BarešićA. VerbanacD. Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Int J Mol Sci. 21 1 21 10.3390/ijms21082668 2020 721537432290414 Open DOISearch in Google Scholar

May M., Abrams J.A.: Emerging Insights into the Esophageal Microbiome. Curr Treat Options Gastroenterol. 16, 72–85, doi: 10.1007/s11938-018-0171-5 (2018) MayM. AbramsJ.A. Emerging Insights into the Esophageal Microbiome Curr Treat Options Gastroenterol. 16 72 85 10.1007/s11938-018-0171-5 2018 584354029350339 Open DOISearch in Google Scholar

McConnaughey M.: Physical Chemical Properties of Fungi. Biomedical Sciences. Elsevier, Netherlands (2014) McConnaugheyM. Physical Chemical Properties of Fungi Biomedical Sciences Elsevier Netherlands 2014 10.1016/B978-0-12-801238-3.05231-4 Search in Google Scholar

Mimee M., Citorik R.J., Lu T.K.: Microbiome therapeutics – Advances and challenges. Advanced Drug Delivery Reviews. 105, 44–54, doi: 10.1016/j.addr.2016.04.032 (2016) MimeeM. CitorikR.J. LuT.K. Microbiome therapeutics – Advances and challenges Advanced Drug Delivery Reviews. 105 44 54 10.1016/j.addr.2016.04.032 2016 509377027158095 Open DOISearch in Google Scholar

Mishra K., Bukavina L., Ghannoum M.: Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol. 12, 1–15, doi: 10.3389/fmicb.2021.636131 (2021) MishraK. BukavinaL. GhannoumM. Symbiosis and Dysbiosis of the Human Mycobiome Front Microbiol. 12 1 15 10.3389/fmicb.2021.636131 2021 849325734630340 Open DOISearch in Google Scholar

Moissl-Eichinger C., Pausan M., Taffner J., Berg G., Bang C., Schmitz R. A.: Archaea Are Interactive Components of Complex Microbiomes. Trends in Microbiology. 26, 70–85. doi: 10.1016/j.tim.2017.07.004 (2018) Moissl-EichingerC. PausanM. TaffnerJ. BergG. BangC. SchmitzR. A. Archaea Are Interactive Components of Complex Microbiomes Trends in Microbiology. 26 70 85 10.1016/j.tim.2017.07.004 2018 28826642 Open DOISearch in Google Scholar

Muñoz-Tamayo R., Muñoz-Tamayo S., Laroche J-P., Marion B., Marion L.: Human colon: a complex bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic chain. IWA World Congress on Anaerobic Digestion (2007) Muñoz-TamayoR. Muñoz-TamayoS. LarocheJ-P. MarionB. MarionL. Human colon: a complex bioreactor. Conceptual modelling for the anaerobic digestion of the functional trophic chain IWA World Congress on Anaerobic Digestion 2007 Search in Google Scholar

Mushnikov N.V., Fomicheva A., Gomelsky M., Bowman G.R.: Inducible asymmetric cell division and cell differentiation in a bacterium. Nat Chem Biol. 15, 925–931, doi: 10.1038/s41589-019-0340-4 (2019) MushnikovN.V. FomichevaA. GomelskyM. BowmanG.R. Inducible asymmetric cell division and cell differentiation in a bacterium Nat Chem Biol. 15 925 931 10.1038/s41589-019-0340-4 2019 743975431406376 Open DOISearch in Google Scholar

Nardone G., Compare D.: The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J. 3, 255–260, doi: 10.1177/2050640614566846 (2015) NardoneG. CompareD. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J. 3 255 260 10.1177/2050640614566846 2015 448053526137299 Open DOISearch in Google Scholar

Neurath M.F., Überla K., Ng S.C.: Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut: 70, 1605–1608, doi: 10.1136/gutjnl-2021-324622 (2020) NeurathM.F. ÜberlaK. NgS.C. Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19 Gut 70 1605 1608 10.1136/gutjnl-2021-324622 2020 807662933903146 Open DOISearch in Google Scholar

Nimish Deo P., Deshmukh R.: Oral Microbiome – Unveiling the Fundamentals. J Oral Maxillofac Pathol. 23, 122–128, doi: 10.4103/jomfp.JOMFP_304_18 (2019) Nimish DeoP. DeshmukhR. Oral Microbiome – Unveiling the Fundamentals J Oral Maxillofac Pathol. 23 122 128 10.4103/jomfp.JOMFP_304_18 2019 650378931110428 Open DOISearch in Google Scholar

Ozbey G., Sproston E., Hanafiah A.: Helicobacter pylori Infection and Gastric Microbiota. Euroasian J Hepatogastroenterol. 10, 36–41, doi: 10.5005/jp-journals-10018-1310 (2020) OzbeyG. SprostonE. HanafiahA. Helicobacter pylori Infection and Gastric Microbiota Euroasian J Hepatogastroenterol. 10 36 41 10.5005/jp-journals-10018-1310 2020 737660132742971 Open DOISearch in Google Scholar

Pérez-Brocal V., Moya A.: The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS One. 13, doi: 10.1371/journal.pone.0191867 (2018) Pérez-BrocalV. MoyaA. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain) PLoS One. 13 10.1371/journal.pone.0191867 2018 580525929420668 Open DOISearch in Google Scholar

Park C.H., Lee S.K.: Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic Review. J Neurogastroenterol Motil. 26, 171–179, doi: 10.5056/jnm19240 (2020) ParkC.H. LeeS.K. Exploring Esophageal Microbiomes in Esophageal Diseases: A Systematic Review J Neurogastroenterol Motil. 26 171 179 10.5056/jnm19240 2020 717650732235026 Open DOISearch in Google Scholar

Pattison J.R., Patou G.: Parvoviruses. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch, Galveston (1996) PattisonJ.R. PatouG. Parvoviruses Medical Microbiology 4th edition Galveston (TX) University of Texas Medical Branch, Galveston 1996 Search in Google Scholar

Qin J., Wang J. i wsp.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464, 59–65, doi: 10.1038/nature08821 (2010) QinJ. WangJ. A human gut microbial gene catalogue established by metagenomic sequencing Nature. 464 59 65 10.1038/nature08821 2010 377980320203603 Open DOISearch in Google Scholar

Radaic A., Kapila Y.L.: The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 19, 1335–1360, doi: 10.1016/j.csbj.2021.02.010 (2021) RadaicA. KapilaY.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions Comput Struct Biotechnol J. 19 1335 1360 10.1016/j.csbj.2021.02.010 2021 796068133777334 Open DOISearch in Google Scholar

Rajendhran J., Gunasekaran P.: Human Microbiomics. Indian J. Microbiol. 50, 109–112, doi: 10.1007/s12088-010-0034-9 (2010) RajendhranJ. GunasekaranP. Human Microbiomics Indian J. Microbiol. 50 109 112 10.1007/s12088-010-0034-9 2010 345028023100817 Open DOISearch in Google Scholar

Requena T., Velasco M.: The human microbiome in sickness and in health. Rev Clin Esp. doi: 10.1016/j.rce.2019.07.004 (2019) RequenaT. VelascoM. The human microbiome in sickness and in health Rev Clin Esp. 10.1016/j.rce.2019.07.004 2019 31522775 Open DOISearch in Google Scholar

Ridlon J.M., Kang D.J., Hylemon P.B., Bajaj J.S.: Bile acids and the gut microbiome. Curr Opin Gastroenterol. 30, 332–338, doi: 10.1097/MOG.0000000000000057 (2014) RidlonJ.M. KangD.J. HylemonP.B. BajajJ.S. Bile acids and the gut microbiome Curr Opin Gastroenterol. 30 332 338 10.1097/MOG.0000000000000057 2014 421553924625896 Open DOISearch in Google Scholar

Ridlon J.M., Kang D.J., Hylemon P.B.: Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 47, 241–259, doi: 10.1194/jlr.R500013-JLR200 (2006) RidlonJ.M. KangD.J. HylemonP.B. Bile salt biotransformations by human intestinal bacteria J Lipid Res. 47 241 259 10.1194/jlr.R500013-JLR200 2006 16299351 Open DOISearch in Google Scholar

Rieux A., Soubeyrand S., Bonnot F., Klein E.K., Ngando J.E., Mehl A., Ravigne V., Carlier J., de Lapeyre de Bellaire L.: Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PloS one. 9, doi: 10.1371/journal.pone.0103225 (2014) RieuxA. SoubeyrandS. BonnotF. KleinE.K. NgandoJ.E. MehlA. RavigneV. CarlierJ. de Lapeyre de BellaireL. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment PloS one. 9 10.1371/journal.pone.0103225 2014 413050025116080 Open DOISearch in Google Scholar

Robinson N.P.: Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerg Top Life Sci. 2, 453–458, doi: 10.1042/ETLS20180022 (2018) RobinsonN.P. Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights Emerg Top Life Sci. 2 453 458 10.1042/ETLS20180022 2018 728899933525822 Open DOISearch in Google Scholar

Rowan-Nash A.D., Korry B.J., Mylonakis E., Belenky P.: Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev. 83, 1–63, doi: 10.1128/MMBR.00044-18 (2019) Rowan-NashA.D. KorryB.J. MylonakisE. BelenkyP. Cross-Domain and Viral Interactions in the Microbiome Microbiol Mol Biol Rev. 83 1 63 10.1128/MMBR.00044-18 2019 638344430626617 Open DOISearch in Google Scholar

Ryu, W.-S.: Molecular Virology of Human Pathogenic Viruses. Academic Press, Korea (2007) RyuW.-S. Molecular Virology of Human Pathogenic Viruses Academic Press Korea 2007 Search in Google Scholar

Saffouri G.B., Shields-Cutler R.R., Chen J.:. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 10, doi: 10.1038/s41467-019-09964-7 (2019) SaffouriG.B. Shields-CutlerR.R. ChenJ. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders Nat Commun. 10 10.1038/s41467-019-09964-7 2019 649486631043597 Open DOISearch in Google Scholar

Salehi B., Dimitrijević M., Aleksić A., Neffe-Skocińska K., Zielińska D., Kołożyn-Krajewska D., Sharifi-Rad J., Stojanović-Radić Z., Prabu S.M., Rodrigues C.F., Martins N.: Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Crit Rev Food Sci Nutr.: 61, 1415–1428, doi: 10.1080/10408398.2020.1760202 (2021) SalehiB. DimitrijevićM. AleksićA. Neffe-SkocińskaK. ZielińskaD. Kołożyn-KrajewskaD. Sharifi-RadJ. Stojanović-RadićZ. PrabuS.M. RodriguesC.F. MartinsN. Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics Crit Rev Food Sci Nutr. 61 1415 1428 10.1080/10408398.2020.1760202 2021 32400169 Open DOISearch in Google Scholar

Scheithauer T.P., Dallinga-Thie G.M., de Vos W.M., Nieuwdorp M., van Raalte D.H.: Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol, Metab. 5, 759–770, doi: 10.1016/j.molmet.2016.06.002 (2016) ScheithauerT.P. Dallinga-ThieG.M. de VosW.M. NieuwdorpM. van RaalteD.H. Causality of small and large intestinal microbiota in weight regulation and insulin resistance Mol, Metab. 5 759 770 10.1016/j.molmet.2016.06.002 2016 500422727617199 Open DOISearch in Google Scholar

Schulz H.N., Jorgensen B.B.: Big bacteria. Annu Rev Microbiol. 55, 105–137, doi: 10.1146/annurev.micro.55.1.105 (2001) SchulzH.N. JorgensenB.B. Big bacteria Annu Rev Microbiol. 55 105 137 10.1146/annurev.micro.55.1.105 2001 11544351 Open DOISearch in Google Scholar

Sundin O.H., Mendoza-Ladd A., Zeng M., Diaz-Arévalo D., Morales E., Fagan B.M., Ordoñez J., Velez P., Antony N., McCallum R.W.: The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol., 17, doi: 10.1186/s12866-017-1059-6 (2017) SundinO.H. Mendoza-LaddA. ZengM. Diaz-ArévaloD. MoralesE. FaganB.M. OrdoñezJ. VelezP. AntonyN. McCallumR.W. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon BMC Microbiol. 17 10.1186/s12866-017-1059-6 2017 551304028716079 Open DOISearch in Google Scholar

Sundin O. H., Mendoza-Ladd A., Zeng M., Diaz-Arévalo D., Morales E., Fagan B. M., Ordonez J., Velez P., Antony N., McCallum R. W.: The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon. BMC Microbiol. 17, 160, doi: 10.1186/s12866-017-1059-6 (2017) SundinO. H. Mendoza-LaddA. ZengM. Diaz-ArévaloD. MoralesE. FaganB. M. OrdonezJ. VelezP. AntonyN. McCallumR. W. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon BMC Microbiol. 17 160 10.1186/s12866-017-1059-6 2017 Open DOISearch in Google Scholar

Takakura W., Pimentel M.: Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An Update. Front. Psychiatry. 11, doi: 10.3389/fpsyt.2020.00664 (2020) TakakuraW. PimentelM. Small Intestinal Bacterial Overgrowth and Irritable Bowel Syndrome – An Update Front. Psychiatry. 11 10.3389/fpsyt.2020.00664 2020 736624732754068 Open DOISearch in Google Scholar

The Viruses of the Gut Microbiota. Chapter 21 Microbiota in Gastrointestinal pathophysiology. 179–183, doi: 10.1016/B978-0-12-804024-9.00021-5 (2017) The Viruses of the Gut Microbiota Chapter 21 Microbiota in Gastrointestinal pathophysiology 179 183 10.1016/B978-0-12-804024-9.00021-5 2017 Open DOISearch in Google Scholar

Tiew P.Y., Mac Aogain M., Ali N.A.B.M., Thng K.X., Goh K., Lau K.J.X., Chotirmall S.H.: The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia. 85, 207–231, doi: 10.1007/s11046-019-00413-z (2020) TiewP.Y. Mac AogainM. AliN.A.B.M. ThngK.X. GohK. LauK.J.X. ChotirmallS.H. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges Mycopathologia. 85 207 231 10.1007/s11046-019-00413-z 2020 722344131894501 Open DOISearch in Google Scholar

Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I.: The human microbiome project: a strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease. Nature. 449, 804–810, doi: 10.1038/nature06244 (2007) TurnbaughP.J. LeyR.E. HamadyM. Fraser-LiggettC.M. KnightR. GordonJ.I. The human microbiome project: a strategy to understand the microbial components of the human genetic and metabolic landscape and how they contribute to normal physiology and predisposition to disease Nature. 449 804 810 10.1038/nature06244 2007 370943917943116 Open DOISearch in Google Scholar

Underhill D.M., Iliev I.D.: The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14, 405–416, doi: 10.1038/nri3684 (2014) UnderhillD.M. IlievI.D. The mycobiota: interactions between commensal fungi and the host immune system Nat. Rev. Immunol. 14 405 416 10.1038/nri3684 2014 433285524854590 Open DOISearch in Google Scholar

Urry L.A., Cain M.L., Wasserman S.A., Minorsky P.V.: Campbell Biology 12th Edition. Pearson, New York (2020) UrryL.A. CainM.L. WassermanS.A. MinorskyP.V. Campbell Biology 12th Edition Pearson New York 2020 Search in Google Scholar

Van de Pol J.A., van Best N., Mbakwa C.A., Thijs C., Savelkoul P.H., Arts I.C., Hornef M.W., Mommers M., Penders J.: Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in Children. Front Microbiol. 8, doi: 10.3389/fmicb.2017.00355 (2017) Van de PolJ.A. van BestN. MbakwaC.A. ThijsC. SavelkoulP.H. ArtsI.C. HornefM.W. MommersM. PendersJ. Gut Colonization by Methanogenic Archaea Is Associated with Organic Dairy Consumption in Children Front Microbiol. 8 10.3389/fmicb.2017.00355 2017 534491428344572 Open DOISearch in Google Scholar

Varricchi G., Poto R., Ianiro G.: Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Front Immunol. 12, doi: 10.3389/fimmu.2021.712915 (2021) VarricchiG. PotoR. IaniroG. Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions Front Immunol. 12 10.3389/fimmu.2021.712915 2021 836641234408753 Open DOISearch in Google Scholar

Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K.: Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms. 8, doi: 10.3390/microorganisms8040483 (2020) VemuriR. ShankarE.M. ChieppaM. EriR. KavanaghK. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths Microorganisms. 8 10.3390/microorganisms8040483 2020 723238632231141 Open DOISearch in Google Scholar

Young KD.: Bacterial morphology: why have different shapes? Curr Opin Microbiol. 596–600, doi: 10.1016/j.mib.2007.09.009 (2007) YoungKD. Bacterial morphology: why have different shapes? Curr Opin Microbiol. 596 600 10.1016/j.mib.2007.09.009 2007 216950317981076 Open DOISearch in Google Scholar

Zarco M., Vess T., Ginsburg G.: The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Dis. 18, 109–120, doi: 10.1111/j.1601-0825.2011.01851.x (2012) ZarcoM. VessT. GinsburgG. The oral microbiome in health and disease and the potential impact on personalized dental medicine Oral Dis. 18 109 120 10.1111/j.1601-0825.2011.01851.x 2012 21902769 Open DOISearch in Google Scholar

Zhang Y., Wang X., Li H., Ni C., Du Z., Yan F.: Human oral microbiota and its modulation for oral health. Biomed Pharmacother. 99, 883–893, doi: 10.1016/j.biopha.2018.01.146 (2018) ZhangY. WangX. LiH. NiC. DuZ. YanF. Human oral microbiota and its modulation for oral health Biomed Pharmacother. 99 883 893 10.1016/j.biopha.2018.01.146 2018 29710488 Open DOISearch in Google Scholar

Zhong M., Xiong Y., Zhao J.: Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 11, 4945–4956, doi: 10.7150/thno.55209 (2021) ZhongM. XiongY. ZhaoJ. Candida albicans disorder is associated with gastric carcinogenesis Theranostics. 11 4945 4956 10.7150/thno.55209 2021 797830633754037 Open DOISearch in Google Scholar

Zikai W., Rongrong R., Yunsheng Y.: Mucosa microbiome of gastric lesions: Fungi and bacteria interactions. Prog Mol Biol Transl Sci. 171, 195–213, (2020) ZikaiW. RongrongR. YunshengY. Mucosa microbiome of gastric lesions: Fungi and bacteria interactions Prog Mol Biol Transl Sci. 171 195 213 2020 10.1016/bs.pmbts.2020.03.00432475522 Search in Google Scholar

Zinder N.D., Lederberg J.: Genetic exchange in Salmonella. J Bacteriol. 64, 679–699, doi: 10.1128/jb.64.5.679-699.1952 (1952) ZinderN.D. LederbergJ. Genetic exchange in Salmonella J Bacteriol. 64 679 699 10.1128/jb.64.5.679-699.1952 1952 16940912999698 Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo