Open Access

Polarization of microglia and macrophages in the selected degenerative and inflammatory diseases of the nervous system


Cite

Mosser D.M., Edwards J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008; 8: 958-969 Mosser D.M. Edwards J.P. Exploring the full spectrum of macrophage activation Nat. Rev. Immunol 2008 8 958 96910.1038/nri2448272499119029990Search in Google Scholar

Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T. i wsp.: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity, 2014; 41: 14-20 Murray P.J. Allen J.E. Biswas S.K. Fisher E.A. Gilroy D.W. Goerdt S. Gordon S. Hamilton J.A. Ivashkiv L.B. Lawrence T. i wsp. Macrophage activation and polarization: Nomenclature and experimental guidelines Immunity 2014 41 14 2010.1016/j.immuni.2014.06.008412341225035950Search in Google Scholar

Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., De Nardo D., Gohel T.D., Emde M., Schmidleithner L. i wsp.: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014; 40: 274-288 Xue J. Schmidt S.V. Sander J. Draffehn A. Krebs W. Quester I. De Nardo D. Gohel T.D. Emde M. Schmidleithner L. i wsp. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation Immunity 2014 40 274 28810.1016/j.immuni.2014.01.006399139624530056Search in Google Scholar

Nazimek K., Bryniarski K.: Aktywność biologiczna makrofagów w zdrowiu i chorobie. Postępy Hig. Med. Dośw., 2012; 66: 507-520 Nazimek K. Bryniarski K. Aktywność biologiczna makrofagów w zdrowiu i chorobie Postępy Hig. Med. Dośw 2012 66 507 52010.5604/17322693.100408022922151Search in Google Scholar

Murray P.J., Wynn T.A.: Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011; 11: 723-737 Murray P.J. Wynn T.A. Protective and pathogenic functions of macrophage subsets Nat. Rev. Immunol 2011 11 723 73710.1038/nri3073342254921997792Search in Google Scholar

Martinez F.O., Sica A., Mantovani A., Locati M.: Macrophage activation and polarization. Front. Biosci., 2008; 13: 453-461 Martinez F.O. Sica A. Mantovani A. Locati M. Macrophage activation and polarization Front. Biosci 2008 13 453 46110.2741/269217981560Search in Google Scholar

Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Mehler M.F., Conway S.J., Ng L.G., Stanley E.R. i wsp.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010; 330: 841-845 Ginhoux F. Greter M. Leboeuf M. Nandi S. See P. Gokhan S. Mehler M.F. Conway S.J. Ng L.G. Stanley E.R. i wsp. Fate mapping analysis reveals that adult microglia derive from primitive macrophages Science 2010 330 841 84510.1126/science.1194637371918120966214Search in Google Scholar

Tremblay M.È., Sierra A. (red.): Microglia in Health and Disease. Springer-Verlag New York, New York 2014 Tremblay M.È. Sierra A. (red.) Microglia in Health and Disease Springer-Verlag New York New York 201410.1007/978-1-4939-1429-6Search in Google Scholar

Ransohoff R.M.: A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci., 2016; 19: 987-991 Ransohoff R.M. A polarizing question: Do M1 and M2 microglia exist? Nat Neurosci 2016 19 987 99110.1038/nn.433827459405Search in Google Scholar

Cherry J.D., Olschowka J.A., O’Banion M.K.: Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuro-inflammation, 2014; 11: 98 Cherry J.D. Olschowka J.A. O’Banion M.K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed J. Neuro-inflammation 2014 11 9810.1186/1742-2094-11-98406084924889886Search in Google Scholar

Raciborski F., Gawińska E., Kłak A., Słowik A., Wnuk M.: Udary mózgu: rosnący problem w starzejącym się społeczeństwie. Instytut Ochrony Zdrowia w Polsce, Warszawa 2016 Raciborski F. Gawińska E. Kłak A. Słowik A. Wnuk M. Udary mózgu: rosnący problem w starzejącym się społeczeństwie Instytut Ochrony Zdrowia w Polsce Warszawa 2016Search in Google Scholar

Kacperska M.J., Jastrzȩbski K., Głąbiński A.: Procesy patologiczne w mózgu podczas jego niedokrwienia. Aktualn. Neurol., 2013; 13: 16-23 Kacperska M.J. Jastrzȩbski K. Głąbiński A. Procesy patologiczne w mózgu podczas jego niedokrwienia Aktualn. Neurol 2013 13 16 23Search in Google Scholar

Morrison H.W., Filosa J.A.: A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J. Neuroinflammation, 2013; 10: 4 Morrison H.W. Filosa J.A. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion J. Neuroinflammation 2013 10 410.1186/1742-2094-10-4357032723311642Search in Google Scholar

Perego C., Fumagalli S., De Simoni M.G.: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation, 2011; 8: 174 Perego C. Fumagalli S. De Simoni M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice J. Neuroinflammation 2011 8 17410.1186/1742-2094-8-174325154822152337Search in Google Scholar

Li T., Pang S., Yu Y., Wu X., Guo J., Zhang S.: Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain, 2013; 136: 3578-3588 Li T. Pang S. Yu Y. Wu X. Guo J. Zhang S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke Brain 2013 136 3578 358810.1093/brain/awt28724154617Search in Google Scholar

Schilling M., Besselmann M., Müller M., Strecker J.K., Ringel-stein E.B., Kiefer R.: Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol., 2005; 196: 290-297 Schilling M. Besselmann M. Müller M. Strecker J.K. Ringel-stein E.B. Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice Exp. Neurol 2005 196 290 29710.1016/j.expneurol.2005.08.00416153641Search in Google Scholar

Emerich D.F., Dean R.L.3rd, Bartus R.T.: The role of leukocytes following cerebral ischemia: Pathogenic variable or bystander reaction to emerging infarct? Exp. Neurol., 2002; 173: 168-181 Emerich D.F. Dean R.L.3rd Bartus R.T. The role of leukocytes following cerebral ischemia: Pathogenic variable or bystander reaction to emerging infarct? Exp Neurol 2002 173 168 18110.1006/exnr.2001.783511771949Search in Google Scholar

Nilupul Perera M., Ma H.K., Arakawa S., Howells D.W., Markus R., Rowe C.C., Donnan G.A.: Inflammation following stroke. J. Clin. Neurosci., 2006; 13: 1-8 Nilupul Perera M. Ma H.K. Arakawa S. Howells D.W. Markus R. Rowe C.C. Donnan G.A. Inflammation following stroke J. Clin. Neurosci 2006 13 1 810.1016/j.jocn.2005.07.00516410192Search in Google Scholar

Lampron A., Larochelle A., Laflamme N., Préfontaine P., Plante M.M., Sánchez M.G., Yong V.W., Stys P.K., Tremblay M.È., Rivest S.: Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med., 2015; 212: 481-495 Lampron A. Larochelle A. Laflamme N. Préfontaine P. Plante M.M. Sánchez M.G. Yong V.W. Stys P.K. Tremblay M.È. Rivest S. Inefficient clearance of myelin debris by microglia impairs remyelinating processes J. Exp. Med 2015 212 481 49510.1084/jem.20141656438728225779633Search in Google Scholar

Xiong X.Y., Liu L., Yang Q.W.: Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016; 142: 23-44 Xiong X.Y. Liu L. Yang Q.W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke Prog. Neurobiol 2016 142 23 4410.1016/j.pneurobio.2016.05.00127166859Search in Google Scholar

Fernández D.J., Lamkanfi M.: Inflammatory caspases: Key regulators of inflammation and cell death. Biol. Chem., 2015; 396: 193203 Fernández D.J. Lamkanfi M. Inflammatory caspases: Key regulators of inflammation and cell death Biol. Chem 2015 396 19320310.1515/hsz-2014-025325389992Search in Google Scholar

Gelderblom M., Weymar A., Bernreuther C., Velden J., Arunachalam P., Steinbach K., Orthey E., Arumugam T.V., Leypoldt F., Simova O. i wsp.: Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012; 120: 3793-3802 Gelderblom M. Weymar A. Bernreuther C. Velden J. Arunachalam P. Steinbach K. Orthey E. Arumugam T.V. Leypoldt F. Simova O. i wsp. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke Blood 2012 120 3793 380210.1182/blood-2012-02-41272622976954Search in Google Scholar

Gelosa P., Lecca D., Fumagalli M., Wypych D., Pignieri A., Cimino M., Verderio C., Enerbäck M., Nikookhesal E., Tremoli E. i wsp.: Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J. Cereb. Blood Flow Metab., 2014; 34: 979-988 Gelosa P. Lecca D. Fumagalli M. Wypych D. Pignieri A. Cimino M. Verderio C. Enerbäck M. Nikookhesal E. Tremoli E. i wsp. Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor J. Cereb. Blood Flow Metab 2014 34 979 98810.1038/jcbfm.2014.45405024224643079Search in Google Scholar

Riboldi E., Porta C., Morlacchi S., Viola A., Mantovani A., Sica A.: Hypoxia-mediated regulation of macrophage functions in patho-physiology. Int. Immunol., 2013; 25: 67-75 Riboldi E. Porta C. Morlacchi S. Viola A. Mantovani A. Sica A. Hypoxia-mediated regulation of macrophage functions in patho-physiology Int. Immunol 2013 25 67 7510.1093/intimm/dxs11023179187Search in Google Scholar

Ritzel R.M., Patel A.R., Grenier J.M., Crapser J., Verma R., Jellison E.R., McCullough L.D.: Functional differences between microglia and monocytes after ischemic stroke. J. Neuroinflammation, 2015; 12: 106 Ritzel R.M. Patel A.R. Grenier J.M. Crapser J. Verma R. Jellison E.R. McCullough L.D. Functional differences between microglia and monocytes after ischemic stroke J. Neuroinflammation 2015 12 10610.1186/s12974-015-0329-1446548126022493Search in Google Scholar

Girard S., Brough D., Lopez-Castejon G., Giles J., Rothwell N.J., Allan S.M.: Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia, 2013; 61: 813-824 Girard S. Brough D. Lopez-Castejon G. Giles J. Rothwell N.J. Allan S.M. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices Glia 2013 61 813 82410.1002/glia.22478364487623404620Search in Google Scholar

Yamasaki R., Lu H., Butovsky O., Ohno N., Rietsch A.M., Cialic R., Wu P.M., Doykan C.E., Lin J., Cotleur A.C. i wsp.: Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med., 2014; 211: 1533-1549 Yamasaki R. Lu H. Butovsky O. Ohno N. Rietsch A.M. Cialic R. Wu P.M. Doykan C.E. Lin J. Cotleur A.C. i wsp. Differential roles of microglia and monocytes in the inflamed central nervous system J. Exp. Med 2014 211 1533 154910.1084/jem.20132477411394725002752Search in Google Scholar

Wattananit S., Tornero D., Graubardt N., Memanishvili T., Monni E., Tatarishvili J., Miskinyte G., Ge R., Ahlenius H., Lindvall O. i wsp.: Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci., 2016; 36: 4182-4195 Wattananit S. Tornero D. Graubardt N. Memanishvili T. Monni E. Tatarishvili J. Miskinyte G. Ge R. Ahlenius H. Lindvall O. i wsp. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice J. Neurosci 2016 36 4182 419510.1523/JNEUROSCI.4317-15.2016660178327076418Search in Google Scholar

Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., Grotta J.C., Aronowski J.: Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann. Neurol., 2007; 61: 352-362 Zhao X. Sun G. Zhang J. Strong R. Song W. Gonzales N. Grotta J.C. Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator-activated receptor γ in microglia/macrophages Ann. Neurol 2007 61 352 36210.1002/ana.2109717457822Search in Google Scholar

Lin S., Yin Q., Zhong Q., Lv F.L., Zhou Y., Li J.Q., Wang J.Z., Su B.Y., Yang Q.W.: Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation, 2012; 9: 46 Lin S. Yin Q. Zhong Q. Lv F.L. Zhou Y. Li J.Q. Wang J.Z. Su B.Y. Yang Q.W. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage J. Neuroinflammation 2012 9 4610.1186/1742-2094-9-46334468722394415Search in Google Scholar

Fang H., Chen J., Lin S., Wang P., Wang Y., Xiong X., Yang Q.: CD36-mediated hematoma absorption following intracerebral hemorrhage: Negative regulation by TLR4 signaling. J. Immunol, 2014; 192: 5984-5992 Fang H. Chen J. Lin S. Wang P. Wang Y. Xiong X. Yang Q. CD36-mediated hematoma absorption following intracerebral hemorrhage: Negative regulation by TLR4 signaling J. Immunol 2014 192 5984 599210.4049/jimmunol.1400054404908224808360Search in Google Scholar

Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J.: Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012; 43: 3063-3070 Hu X. Li P. Guo Y. Wang H. Leak R.K. Chen S. Gao Y. Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia Stroke 2012 43 3063 307010.1161/STROKEAHA.112.65965622933588Search in Google Scholar

Suenaga J., Hu X., Pu H., Shi Y., Hassan S.H., Xu M., Leak R.K., Stetler R.A., Gao Y., Chen J.: White matter injury and microglia/ macrophage polarization are strongly linked with age-related longterm deficits in neurological function after stroke. Exp. Neurol., 2015; 272: 109-119 Suenaga J. Hu X. Pu H. Shi Y. Hassan S.H. Xu M. Leak R.K. Stetler R.A. Gao Y. Chen J. White matter injury and microglia/ macrophage polarization are strongly linked with age-related longterm deficits in neurological function after stroke Exp. Neurol 2015 272 109 11910.1016/j.expneurol.2015.03.021459108825836044Search in Google Scholar

Taylor R.A., Hammond M.D., Ai Y., Sansing L.H.: CX3CR1-null microglia fail to transition to an M2 phenotype after intracerebral hemorrhage. Stroke, 2015; 46: A114-A114 Taylor R.A. Hammond M.D. Ai Y. Sansing L.H. CX3CR1-null microglia fail to transition to an M2 phenotype after intracerebral hemorrhage Stroke 2015 46 A114 A11410.1161/str.46.suppl_1.114Search in Google Scholar

Kerr N., Dietrich D.W., Bramlett H.M., Raval A.P.: Sexually dimorphic microglia and ischemic stroke. CNS Neurosci. Ther., 2019; 25: 1308-1317 Kerr N. Dietrich D.W. Bramlett H.M. Raval A.P. Sexually dimorphic microglia and ischemic stroke CNS Neurosci. Ther 2019 25 1308 131710.1111/cns.13267688771631747126Search in Google Scholar

Ma Y., Wang J., Wang Y., Yang G.Y.: The biphasic function of microglia in ischemic stroke. Prog. Neurobiol., 2017; 157: 247-272 Ma Y. Wang J. Wang Y. Yang G.Y. The biphasic function of microglia in ischemic stroke Prog. Neurobiol 2017 157 247 27210.1016/j.pneurobio.2016.01.00526851161Search in Google Scholar

Hu X., Leak R.K., Shi Y., Suenaga J., Gao Y., Zheng P., Chen J.: Microglial and macrophage polarization – new prospects for brain repair. Nat. Rev. Neurol., 2015; 11: 56-64 Hu X. Leak R.K. Shi Y. Suenaga J. Gao Y. Zheng P. Chen J. Microglial and macrophage polarization – new prospects for brain repair Nat. Rev. Neurol 2015 11 56 6410.1038/nrneurol.2014.207439549725385337Search in Google Scholar

Chu H.X., Broughton B.R., Kim H.A., Lee S., Drummond G.R., Sobey C.G.: Evidence that Ly6Chi monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke, 2015; 46: 1929-1937 Chu H.X. Broughton B.R. Kim H.A. Lee S. Drummond G.R. Sobey C.G. Evidence that Ly6Chi monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization Stroke 2015 46 1929 193710.1161/STROKEAHA.115.00942625999385Search in Google Scholar

Wang G., Zhang J., Hu X., Zhang L., Mao L., Jiang X., Liou A.K., Leak R.K., Gao Y., Chen J.: Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab., 2013; 33: 1864-1874 Wang G. Zhang J. Hu X. Zhang L. Mao L. Jiang X. Liou A.K. Leak R.K. Gao Y. Chen J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury J. Cereb. Blood Flow Metab 2013 33 1864 187410.1038/jcbfm.2013.146385189823942366Search in Google Scholar

Nikodemova M., Duncan I.D., Watters J.J.: Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia. J. Neurochem., 2006; 96: 314-323 Nikodemova M. Duncan I.D. Watters J.J. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia J. Neurochem 2006 96 314 32310.1111/j.1471-4159.2005.03520.x16336636Search in Google Scholar

Malhotra K., Chang J.J., Khunger A., Blacker D., Switzer J.A., Goyal N., Hernandez A.V., Pasupuleti V., Alexandrov A.V., Tsivgoulis G.: Minocycline for acute stroke treatment: A systematic review and meta-analysis of randomized clinical trials. J. Neurol., 2018; 265: 1871-1879 Malhotra K. Chang J.J. Khunger A. Blacker D. Switzer J.A. Goyal N. Hernandez A.V. Pasupuleti V. Alexandrov A.V. Tsivgoulis G. Minocycline for acute stroke treatment: A systematic review and meta-analysis of randomized clinical trials J. Neurol 2018 265 1871 187910.1007/s00415-018-8935-329948247Search in Google Scholar

Pan J., Jin J.L., Ge H.M., Yin K.L., Chen X., Han L.J., Chen Y., Qian L., Li X.X., Xu Y.: Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J. Neuroinflammation, 2015; 12: 51 Pan J. Jin J.L. Ge H.M. Yin K.L. Chen X. Han L.J. Chen Y. Qian L. Li X.X. Xu Y. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner J. Neuroinflammation 2015 12 5110.1186/s12974-015-0270-3437855625889216Search in Google Scholar

Han L., Cai W., Mao L., Liu J., Li P., Leak R.K., Xu Y., Hu X., Chen J.: Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke, 2015; 46: 2628-2636 Han L. Cai W. Mao L. Liu J. Li P. Leak R.K. Xu Y. Hu X. Chen J. Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia Stroke 2015 46 2628 263610.1161/STROKEAHA.115.010091Search in Google Scholar

Desestret V., Riou A., Chauveau F., Cho T.H., Devillard E., Marinescu M., Ferrera R., Rey C., Chanal M., Angoulvant D. i wsp.: In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS One, 2013; 8: e67063 Desestret V. Riou A. Chauveau F. Cho T.H. Devillard E. Marinescu M. Ferrera R. Rey C. Chanal M. Angoulvant D. i wsp. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages PLoS One 2013 8 e6706310.1371/journal.pone.0067063Search in Google Scholar

Stratton J.A., Shah P.T.: Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regen. Res., 2016; 11: 5357 Stratton J.A. Shah P.T. Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regen Res 2016 11 535710.4103/1673-5374.175042Search in Google Scholar

Gaudet A.D., Popovich P.G., Ramer M.S.: Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation, 2011; 8: 110 Gaudet A.D. Popovich P.G. Ramer M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury J. Neuroinflammation 2011 8 11010.1186/1742-2094-8-110Search in Google Scholar

Kigerl K.A., Gensel J.C., Ankeny D.P., Alexander J.K., Donnelly D.J., Popovich P.G.: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009; 29: 13435-13444 Kigerl K.A. Gensel J.C. Ankeny D.P. Alexander J.K. Donnelly D.J. Popovich P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord J. Neurosci 2009 29 13435 1344410.1523/JNEUROSCI.3257-09.2009Search in Google Scholar

Kong X., Gao J.: Macrophage polarization: A key event in the secondary phase of acute spinal cord injury. J. Cell. Mol. Med., 2017; 21: 941-954 Kong X. Gao J. Macrophage polarization: A key event in the secondary phase of acute spinal cord injury J. Cell. Mol. Med 2017 21 941 95410.1111/jcmm.13034Search in Google Scholar

Wang X., Cao K., Sun X., Chen Y., Duan Z., Sun L., Guo L., Bai P., Sun D., Fan J. i wsp.: Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia, 2015; 63: 635-651 Wang X. Cao K. Sun X. Chen Y. Duan Z. Sun L. Guo L. Bai P. Sun D. Fan J. i wsp. Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris Glia 2015 63 635 65110.1002/glia.22774Search in Google Scholar

Galtrey C.M., Fawcett J.W.: The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev., 2007; 54: 1-18 Galtrey C.M. Fawcett J.W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system Brain Res. Rev 2007 54 1 1810.1016/j.brainresrev.2006.09.006Search in Google Scholar

Zhang Y., Liu Z., Zhang W., Wu Q., Zhang Y., Liu Y., Guan Y., Chen X.: Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J. Neurosci. Res., 2019; 97: 733-743 Zhang Y. Liu Z. Zhang W. Wu Q. Zhang Y. Liu Y. Guan Y. Chen X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages J. Neurosci. Res 2019 97 733 74310.1002/jnr.24409Search in Google Scholar

Zabłocka A.: Choroba Alzheimera jako przykład schorzenia neurodegeneracyjnego. Postępy Hig. Med. Dośw., 2006; 60: 209-216 Zabłocka A. Choroba Alzheimera jako przykład schorzenia neurodegeneracyjnego Postępy Hig. Med. Dośw 2006 60 209 216Search in Google Scholar

Cunningham C.: Microglia and neurodegeneration: The role of systemic inflammation. Glia, 2013; 61: 71-90 Cunningham C. Microglia and neurodegeneration: The role of systemic inflammation Glia 2013 61 71 9010.1002/glia.22350Search in Google Scholar

Wegiel J., Wang K.C., Imaki H., Rubenstein R., Wronska A., Osuchowski M., Lipinski W.J., Walker L.C., LeVine H.: The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol. Aging, 2001; 22: 49-61 Wegiel J. Wang K.C. Imaki H. Rubenstein R. Wronska A. Osuchowski M. Lipinski W.J. Walker L.C. LeVine H. The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice Neurobiol. Aging 2001 22 49 6110.1016/S0197-4580(00)00181-0Search in Google Scholar

Colton C.A., Mott R.T., Sharpe H., Xu Q., van Nostrand W.E., Vitek M.P.: Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation, 2006; 3: 27 Colton C.A. Mott R.T. Sharpe H. Xu Q. van Nostrand W.E. Vitek M.P. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD J. Neuroinflammation 2006 3 2710.1186/1742-2094-3-27Search in Google Scholar

Simard A.R., Soulet D., Gowing G., Julien J.P., Rivest S.: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 2006; 49: 489502 Simard A.R. Soulet D. Gowing G. Julien J.P. Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease Neuron 2006 49 48950210.1016/j.neuron.2006.01.022Search in Google Scholar

Spangenberg E.E., Green K.N.: Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav. Immun., 2017; 61: 1-11 Spangenberg E.E. Green K.N. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models Brain Behav. Immun 2017 61 1 1110.1016/j.bbi.2016.07.003Search in Google Scholar

Yao K., Zu H.B.: Microglial polarization: Novel therapeutic mechanism against Alzheimer’s disease. Inflammopharmacol., 2020; 28: 95-110 Yao K. Zu H.B. Microglial polarization: Novel therapeutic mechanism against Alzheimer’s disease Inflammopharmacol 2020 28 95 11010.1007/s10787-019-00613-5Search in Google Scholar

Hoozemans J.J., Veerhuis R., Rozemuller J.M., Eikelenboom P.: Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int. J. Dev. Neurosci., 2006; 24: 157-165 Hoozemans J.J. Veerhuis R. Rozemuller J.M. Eikelenboom P. Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology Int. J. Dev. Neurosci 2006 24 157 16510.1016/j.ijdevneu.2005.11.001Search in Google Scholar

Blalock E.M., Geddes J.W., Chen K.C., Porter N.M., Markesbery W.R., Landfield P.W.: Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA, 2004; 101: 21732178 Blalock E.M. Geddes J.W. Chen K.C. Porter N.M. Markesbery W.R. Landfield P.W. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses Proc. Natl. Acad. Sci. USA 2004 101 2173217810.1073/pnas.0308512100Search in Google Scholar

Xu P.T., Li Y.J., Qin X.J., Scherzer C.R., Xu H., Schmechel D.E., Hulette C.M., Ervin J., Gullans S.R., Haines J. i wsp.: Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol. Dis., 2006; 21: 256-275 Xu P.T. Li Y.J. Qin X.J. Scherzer C.R. Xu H. Schmechel D.E. Hulette C.M. Ervin J. Gullans S.R. Haines J. i wsp. Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease Neurobiol. Dis 2006 21 256 27510.1016/j.nbd.2005.07.004Search in Google Scholar

Colangelo V., Schurr J., Ball M.J., Pelaez R.P., Bazan N.G., Lukiw W.J.: Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res., 2002; 70: 462-473 Colangelo V. Schurr J. Ball M.J. Pelaez R.P. Bazan N.G. Lukiw W.J. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling J. Neurosci. Res 2002 70 462 47310.1002/jnr.10351Search in Google Scholar

Wang G., Zhang Y., Chen B., Cheng J.: Preliminary studies on Alzheimer’s disease using cDNA microarrays. Mech. Ageing Dev., 2003; 124: 115-124 Wang G. Zhang Y. Chen B. Cheng J. Preliminary studies on Alzheimer’s disease using cDNA microarrays Mech. Ageing Dev 2003 124 115 12410.1016/S0047-6374(02)00188-4Search in Google Scholar

Bhaskar K., Konerth M., Kokiko-Cochran O.N., Cardona A., Ransohoff R.M., Lamb B.T.: Regulation of tau pathology by the microglial fractalkine receptor. Neuron, 2010; 68: 19-31 Bhaskar K. Konerth M. Kokiko-Cochran O.N. Cardona A. Ransohoff R.M. Lamb B.T. Regulation of tau pathology by the microglial fractalkine receptor Neuron 2010 68 19 3110.1016/j.neuron.2010.08.023295082520920788Search in Google Scholar

Koenigsknecht-Talboo J., Landreth G.E.: Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci., 2005; 25: 8240-8249 Koenigsknecht-Talboo J. Landreth G.E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines J. Neurosci 2005 25 8240 824910.1523/JNEUROSCI.1808-05.2005672553016148231Search in Google Scholar

Yamamoto M., Kiyota T., Walsh S.M., Liu J., Kipnis J., Ikezu T.: Cytokine-mediated inhibition of fibrillar amyloid-β peptide degradation by human mononuclear phagocytes. J. Immunol., 2008; 181: 3877-3886 Yamamoto M. Kiyota T. Walsh S.M. Liu J. Kipnis J. Ikezu T. Cytokine-mediated inhibition of fibrillar amyloid-β peptide degradation by human mononuclear phagocytes J. Immunol 2008 181 3877 388610.4049/jimmunol.181.6.3877260357718768842Search in Google Scholar

Qiu W.Q., Folstein M.F.: Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol. Aging, 2006; 27: 190-198 Qiu W.Q. Folstein M.F. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis Neurobiol. Aging 2006 27 190 19810.1016/j.neurobiolaging.2005.01.00416399206Search in Google Scholar

Sackmann V., Ansell A., Sackmann C., Lund H., Harris R.A., Hallbeck M., Nilsberth C.: Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells. Neurobiol. Aging, 2017; 60: 173-182 Sackmann V. Ansell A. Sackmann C. Lund H. Harris R.A. Hallbeck M. Nilsberth C. Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells Neurobiol. Aging 2017 60 173 18210.1016/j.neurobiolaging.2017.08.02228969867Search in Google Scholar

Venegas C., Kumar S., Franklin B.S., Dierkes T., Brinkschulte R., Tejera D., Vieira-Saecker A., Schwartz S., Santarelli F., Kummer M.P. i wsp.: Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017; 552: 355-361 Venegas C. Kumar S. Franklin B.S. Dierkes T. Brinkschulte R. Tejera D. Vieira-Saecker A. Schwartz S. Santarelli F. Kummer M.P. i wsp. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease Nature 2017 552 355 36110.1038/nature2515829293211Search in Google Scholar

Su X.Q., Wang X.Y., Gong F.T., Feng M., Bai J.J., Zhang R.R., Dang X.Q.: Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury. Brain Res. Bull., 2020; 158: 1-8 Su X.Q. Wang X.Y. Gong F.T. Feng M. Bai J.J. Zhang R.R. Dang X.Q. Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury Brain Res. Bull 2020 158 1 810.1016/j.brainresbull.2020.02.00932092434Search in Google Scholar

Asai H., Ikezu S., Tsunoda S., Medalla M., Luebke J., Haydar T., Wolozin B., Butovsky O., Kügler S., Ikezu T.: Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci., 2015; 18: 1584-1593 Asai H. Ikezu S. Tsunoda S. Medalla M. Luebke J. Haydar T. Wolozin B. Butovsky O. Kügler S. Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation Nat. Neurosci 2015 18 1584 159310.1038/nn.4132469457726436904Search in Google Scholar

Yamanaka M., Ishikawa T., Griep A., Axt D., Kummer M.P., Heneka M.T.: PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012; 32: 17321-17331 Yamanaka M. Ishikawa T. Griep A. Axt D. Kummer M.P. Heneka M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice J. Neurosci 2012 32 17321 1733110.1523/JNEUROSCI.1569-12.2012662184523197723Search in Google Scholar

Gratuze M., Leyns C.E., Holtzman D.M.: New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener., 2018; 13: 66 Gratuze M. Leyns C.E. Holtzman D.M. New insights into the role of TREM2 in Alzheimer’s disease Mol. Neurodegener 2018 13 6610.1186/s13024-018-0298-9630250030572908Search in Google Scholar

Oh S., Son M., Choi J., Lee S., Byun K.: sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model. Biochem. Biophys. Res. Commun., 2018; 495: 807-813 Oh S. Son M. Choi J. Lee S. Byun K. sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model Biochem. Biophys. Res. Commun 2018 495 807 81310.1016/j.bbrc.2017.11.03529127006Search in Google Scholar

Kubiszewska J., Kwieciński H.: Stwardnienie boczne zanikowe. Postępy Nauk Med., 2010; 6: 440-448 Kubiszewska J. Kwieciński H. Stwardnienie boczne zanikowe Postępy Nauk Med 2010 6 440 448Search in Google Scholar

Mishra P.S., Vijayalakshmi K., Nalini A., Sathyaprabha T.N., Kramer B.W., Alladi P.A., Raju T.R.: Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J. Neuroinflammation, 2017; 14: 251 Mishra P.S. Vijayalakshmi K. Nalini A. Sathyaprabha T.N. Kramer B.W. Alladi P.A. Raju T.R. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia J. Neuroinflammation 2017 14 25110.1186/s12974-017-1028-x573251629246232Search in Google Scholar

Ratti E., Berry J.D.: Amyotrophic lateral sclerosis 1 and many diseases. W: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry, red.: T. Lehner, B.L. Miller, M.W. State. Academic Press, San Diego 2016, 685-712 Ratti E. Berry J.D. Amyotrophic lateral sclerosis 1 and many diseases. W: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry, red Lehner T. Miller B.L. State M.W. Academic Press San Diego 2016 685 71210.1016/B978-0-12-800105-9.00042-1Search in Google Scholar

Boillée S., Yamanaka K., Lobsiger C.S., Copeland N.G., Jenkins N.A., Kassiotis G., Kollias G., Cleveland D.W.: Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006; 312: 1389-1392 Boillée S. Yamanaka K. Lobsiger C.S. Copeland N.G. Jenkins N.A. Kassiotis G. Kollias G. Cleveland D.W. Onset and progression in inherited ALS determined by motor neurons and microglia Science 2006 312 1389 139210.1126/science.112351116741123Search in Google Scholar

Xiao Q., Zhao W., Beers D.R., Yen A.A., Xie W., Henkel J.S., Appel S.H.: Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia. J. Neurochem., 2007; 102: 2008-2019 Xiao Q. Zhao W. Beers D.R. Yen A.A. Xie W. Henkel J.S. Appel S.H. Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia J. Neurochem 2007 102 2008 201910.1111/j.1471-4159.2007.04677.x17555556Search in Google Scholar

Geloso M.C., Corvino V., Marchese E., Serrano A., Michetti F., D’Ambrosi N.: The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front. Aging Neurosci., 2017; 9: 242 Geloso M.C. Corvino V. Marchese E. Serrano A. Michetti F. D’Ambrosi N. The dual role of microglia in ALS: Mechanisms and therapeutic approaches Front. Aging Neurosci 2017 9 24210.3389/fnagi.2017.00242552466628790913Search in Google Scholar

Ahmad L., Zhang S.Y., Casanova J.L., Sancho-Shimizu V.: Human TBK1: A gatekeeper of neuroinflammation. Trends Mol. Med., 2016; 22: 511-527 Ahmad L. Zhang S.Y. Casanova J.L. Sancho-Shimizu V. Human TBK1: A gatekeeper of neuroinflammation Trends Mol. Med 2016 22 511 52710.1016/j.molmed.2016.04.006489060527211305Search in Google Scholar

Beers D.R., Zhao W., Liao B., Kano O., Wang J., Huang A., Appel S.H., Henkel J.S.: Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav. Immun., 2011; 25: 1025-1035 Beers D.R. Zhao W. Liao B. Kano O. Wang J. Huang A. Appel S.H. Henkel J.S. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice Brain Behav. Immun 2011 25 1025 103510.1016/j.bbi.2010.12.008309675621176785Search in Google Scholar

Liao B., Zhao W., Beers D.R., Henkel J.S., Appel S.H.: Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol., 2012; 237: 147-152 Liao B. Zhao W. Beers D.R. Henkel J.S. Appel S.H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS Exp. Neurol 2012 237 147 15210.1016/j.expneurol.2012.06.011412641722735487Search in Google Scholar

Gravel M., Béland L.C., Soucy G., Abdelhamid E., Rahimian R., Gravel C., Kriz J.: IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase1. J. Neurosci., 2016; 36: 1031-1048 Gravel M. Béland L.C. Soucy G. Abdelhamid E. Rahimian R. Gravel C. Kriz J. IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase1 J. Neurosci 2016 36 1031 104810.1523/JNEUROSCI.0854-15.2016660199926791230Search in Google Scholar

Chiu I.M., Morimoto E.T., Goodarzi H., Liao J.T., O’Keeffe S., Phatnani H.P., Muratet M., Carroll M.C., Levy S., Tavazoie S. i wsp.: A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep., 2013; 4: 385-401 Chiu I.M. Morimoto E.T. Goodarzi H. Liao J.T. O’Keeffe S. Phatnani H.P. Muratet M. Carroll M.C. Levy S. Tavazoie S. i wsp. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model Cell Rep 2013 4 385 40110.1016/j.celrep.2013.06.018427258123850290Search in Google Scholar

Chiu I.M., Chen A., Zheng Y., Kosaras B., Tsiftsoglou S.A., Vartanian T.K., Brown R.H.Jr., Carroll M.C.: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl. Acad. Sci. USA, 2008; 105: 17913-17918 Chiu I.M. Chen A. Zheng Y. Kosaras B. Tsiftsoglou S.A. Vartanian T.K. Brown R.H.Jr. Carroll M.C. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS Proc. Natl. Acad. Sci. USA 2008 105 17913 1791810.1073/pnas.0804610105Search in Google Scholar

Lewis K.E., Rasmussen A.L., Bennett W., King A., West A.K., Chung R.S., Chuah M.I.: Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: Changes in arginase1 and inducible nitric oxide synthase. J. Neuroinflammation, 2014; 11: 55 Lewis K.E. Rasmussen A.L. Bennett W. King A. West A.K. Chung R.S. Chuah M.I. Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: Changes in arginase1 and inducible nitric oxide synthase J. Neuroinflammation 2014 11 5510.1186/1742-2094-11-55Search in Google Scholar

Almer G., Guégan C., Teismann P., Naini A., Rosoklija G., Hays A.P., Chen C., Przedborski S.: Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol., 2001; 49: 176-185 Almer G. Guégan C. Teismann P. Naini A. Rosoklija G. Hays A.P. Chen C. Przedborski S. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis Ann. Neurol 2001 49 176 18510.1002/1531-8249(20010201)49:2<176::AID-ANA37>3.0.CO;2-XSearch in Google Scholar

Keller A.F., Gravel M., Kriz J.: Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp. Neurol., 2011; 228: 69-79 Keller A.F. Gravel M. Kriz J. Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice Exp. Neurol 2011 228 69 7910.1016/j.expneurol.2010.12.010Search in Google Scholar

Apolloni S., Fabbrizio P., Parisi C., Amadio S., Volonté C.: Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1G93A mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol., 2016; 53: 518-531 Apolloni S. Fabbrizio P. Parisi C. Amadio S. Volonté C. Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1G93A mouse model of amyotrophic lateral sclerosis Mol. Neurobiol 2016 53 518 53110.1007/s12035-014-9019-8Search in Google Scholar

Juszczak M., Głąbiński A.: Udział limfocytów Th17 w patogenezie stwardnienia rozsianego. Postępy Hig. Med. Dośw., 2009; 63: 492-501 Juszczak M. Głąbiński A. Udział limfocytów Th17 w patogenezie stwardnienia rozsianego Postępy Hig. Med. Dośw 2009 63 492 501Search in Google Scholar

Shin T., Ahn M., Matsumoto Y.: Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: Recent insights from macrophages. Anat. Cell Biol., 2012; 45: 141-148 Shin T. Ahn M. Matsumoto Y. Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: Recent insights from macrophages Anat. Cell Biol 2012 45 141 14810.5115/acb.2012.45.3.141Search in Google Scholar

Jack C., Ruffini F., Bar-Or A., Antel J.P.: Microglia and multiple sclerosis. J. Neurosci. Res., 2005; 81: 363-373 Jack C. Ruffini F. Bar-Or A. Antel J.P. Microglia and multiple sclerosis J. Neurosci. Res 2005 81 363 37310.1002/jnr.20482Search in Google Scholar

Bauer J., Sminia T., Wouterlood F.G., Dijkstra C.D.: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res., 1994; 38: 365-375 Bauer J. Sminia T. Wouterlood F.G. Dijkstra C.D. Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis J. Neurosci. Res 1994 38 365 37510.1002/jnr.490380402Search in Google Scholar

Ponomarev E.D., Shriver L.P., Maresz K., Dittel B.N.: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res., 2005; 81: 374-389 Ponomarev E.D. Shriver L.P. Maresz K. Dittel B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity J. Neurosci. Res 2005 81 374 38910.1002/jnr.20488Search in Google Scholar

Ransohoff R.M., Engelhardt B.: The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol., 2012; 12: 623-635 Ransohoff R.M. Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system Nat. Rev. Immunol 2012 12 623 63510.1038/nri3265Search in Google Scholar

Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T.: TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol., 1995; 154: 944-953 Renno T. Krakowski M. Piccirillo C. Lin J.Y. Owens T. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis Regulation by Th1 cytokines. J. Immunol 1995 154 944 95310.4049/jimmunol.154.2.944Search in Google Scholar

Zhao W., Tilton R.G., Corbett J.A., McDaniel M.L., Misko T.P., Williamson J.R., Cross A.H., Hickey W.F.: Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J. Neuroimmunol., 1996; 64: 123-133 Zhao W. Tilton R.G. Corbett J.A. McDaniel M.L. Misko T.P. Williamson J.R. Cross A.H. Hickey W.F. Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase J. Neuroimmunol 1996 64 123 13310.1016/0165-5728(95)00158-1Search in Google Scholar

Chu F., Shi M., Zheng C., Shen D., Zhu J., Zheng X., Cui L.: The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2018; 318: 1-7 Chu F. Shi M. Zheng C. Shen D. Zhu J. Zheng X. Cui L. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis J. Neuroimmunol 2018 318 1 710.1016/j.jneuroim.2018.02.01529606295Search in Google Scholar

Ahn M., Yang W., Kim H., Jin J.K., Moon C., Shin T.: Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res., 2012; 1453: 77-86 Ahn M. Yang W. Kim H. Jin J.K. Moon C. Shin T. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis Brain Res 2012 1453 77 8610.1016/j.brainres.2012.03.02322483960Search in Google Scholar

Ponomarev E.D., Maresz K., Tan Y., Dittel B.N.: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci., 2007; 27: 10714-10721 Ponomarev E.D. Maresz K. Tan Y. Dittel B.N. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells J. Neurosci 2007 27 10714 1072110.1523/JNEUROSCI.1922-07.2007667282917913905Search in Google Scholar

Mikita J., Dubourdieu-Cassagno N., Deloire M.S., Vekris A., Biran M., Raffard G., Brochet B., Canron M.H., Franconi J.M., Boiziau C., Petry K.G.: Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. J., 2011; 17: 2-15 Mikita J. Dubourdieu-Cassagno N. Deloire M.S. Vekris A. Biran M. Raffard G. Brochet B. Canron M.H. Franconi J.M. Boiziau C. Petry K.G. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. J 2011 17 2 1510.1177/1352458510379243Search in Google Scholar

Vaknin I., Kunis G., Miller O., Butovsky O., Bukshpan S., Beers D.R., Henkel J.S., Yoles E., Appel S.H., Schwartz M.: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One, 2011; 6: e26921 Vaknin I. Kunis G. Miller O. Butovsky O. Bukshpan S. Beers D.R. Henkel J.S. Yoles E. Appel S.H. Schwartz M. Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis PLoS One 2011 6 e2692110.1371/journal.pone.0026921320782522073221Search in Google Scholar

Moreno M., Bannerman P., Ma J., Guo F., Miers L., Soulika A.M., Pleasure D.: Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J. Neurosci., 2014; 34: 8175-8185 Moreno M. Bannerman P. Ma J. Guo F. Miers L. Soulika A.M. Pleasure D. Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE J. Neurosci 2014 34 8175 818510.1523/JNEUROSCI.1137-14.2014405197324920622Search in Google Scholar

Benedek G., Zhang J., Nguyen H., Kent G., Seifert H., Vandenbark A.A., Offner H.: Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice. J. Neuroimmunol., 2017; 305: 59-67 Benedek G. Zhang J. Nguyen H. Kent G. Seifert H. Vandenbark A.A. Offner H. Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice J. Neuroimmunol 2017 305 59 6710.1016/j.jneuroim.2016.12.018538786528284347Search in Google Scholar

Tierney J.B., Kharkrang M., La Flamme A.C.: Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis. Immunol. Cell Biol., 2009; 87: 235-240 Tierney J.B. Kharkrang M. La Flamme A.C. Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis Immunol. Cell Biol 2009 87 235 24010.1038/icb.2008.9919104504Search in Google Scholar

Ponomarev E.D., Veremeyko T., Barteneva N., Krichevsky A.M., Weiner H.L.: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α– PU.1 pathway. Nat. Med., 2011; 17: 64-70 Ponomarev E.D. Veremeyko T. Barteneva N. Krichevsky A.M. Weiner H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α– PU.1 pathway Nat. Med 2011 17 64 7010.1038/nm.2266304494021131957Search in Google Scholar

Ponomarev E.D., Veremeyko T., Weiner H.L.: MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 2013; 61: 91-103 Ponomarev E.D. Veremeyko T. Weiner H.L. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS Glia 2013 61 91 10310.1002/glia.22363343428922653784Search in Google Scholar

Yang Y., Ye Y., Kong C., Su X., Zhang X., Bai W., He X.: MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem. Res., 2019; 44: 811-828 Yang Y. Ye Y. Kong C. Su X. Zhang X. Bai W. He X. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway Neurochem. Res 2019 44 811 82810.1007/s11064-018-02714-z30628018Search in Google Scholar

Hu L., Chen Z., Li L., Jiang Z., Zhu L.: Resveratrol decreases CD45+CD206− subtype macrophages in LPS-induced murine acute lung injury by SOCS3 signalling pathway. J. Cell. Mol. Med., 2019; 23: 8101-8113 Hu L. Chen Z. Li L. Jiang Z. Zhu L. Resveratrol decreases CD45+CD206− subtype macrophages in LPS-induced murine acute lung injury by SOCS3 signalling pathway J. Cell. Mol. Med 2019 23 8101 811310.1111/jcmm.14680685091931559687Search in Google Scholar

Imler T.J.Jr., Petro T.M.: Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4- IFN-γ+ cells, and decreased macrophage IL-6 expression. Int. Immunopharmacol., 2009; 9: 134-143 Imler T.J.Jr. Petro T.M. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4- IFN-γ+ cells, and decreased macrophage IL-6 expression Int. Immunopharmacol 2009 9 134 14310.1016/j.intimp.2008.10.01519022403Search in Google Scholar

Lühder F., Lee D.H., Gold R., Stegbauer J., Linker R.A.: Small but powerful: Short peptide hormones and their role in autoimmune inflammation. J. Neuroimmunol., 2009; 217: 1-7 Lühder F. Lee D.H. Gold R. Stegbauer J. Linker R.A. Small but powerful: Short peptide hormones and their role in autoimmune inflammation J. Neuroimmunol 2009 217 1 710.1016/j.jneuroim.2009.08.00819748684Search in Google Scholar

Yang Q., Zheng C., Cao J., Cao G., Shou P., Lin L., Velletri T., Jiang M., Chen Q., Han Y. i wsp.: Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ., 2016; 23: 1850-1861 Yang Q. Zheng C. Cao J. Cao G. Shou P. Lin L. Velletri T. Jiang M. Chen Q. Han Y. i wsp. Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages Cell Death Differ 2016 23 1850 186110.1038/cdd.2016.71507157427447115Search in Google Scholar

Zhang Z., Zhang Z.Y., Wu Y., Schluesener H.J.: Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience, 2012; 221: 140-150 Zhang Z. Zhang Z.Y. Wu Y. Schluesener H.J. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats Neuroscience 2012 221 140 15010.1016/j.neuroscience.2012.07.01322800566Search in Google Scholar

Liu C.Y., Guo S.D., Yu J.Z., Li Y.H., Zhang H., Feng L., Chai Z., Yuan H.J., Yang W.F., Feng Q.J. i wsp.: Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages. Eur. J. Immunol., 2015; 45: 142-152 Liu C.Y. Guo S.D. Yu J.Z. Li Y.H. Zhang H. Feng L. Chai Z. Yuan H.J. Yang W.F. Feng Q.J. i wsp. Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages Eur. J. Immunol 2015 45 142 15210.1002/eji.20134442925287052Search in Google Scholar

Bhasin M., Wu M., Tsirka S.E.: Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol., 2007; 8: 10 Bhasin M. Wu M. Tsirka S.E. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis BMC Immunol 2007 8 1010.1186/1471-2172-8-10193700917634104Search in Google Scholar

Nissen J.C., Selwood D.L., Tsirka S.E.: Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J. Neurochem., 2013; 127: 394-402 Nissen J.C. Selwood D.L. Tsirka S.E. Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway J. Neurochem 2013 127 394 40210.1111/jnc.12404380574324033337Search in Google Scholar

eISSN:
1732-2693
Language:
English