Open Access

Ligaza γ-glutamylocysteiny – od molekularnych mechanizmów regulacji aktywności enzymatycznej do implikacji terapeutycznych


Cite

Franklin C.C., Backos D.S., Mohar I., White C.C., Forman H.J., Kavanagh T.J.: Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med., 2009; 30: 86-98Franklin C.C. Backos D.S. Mohar I. White C.C. Forman H.J. Kavanagh T.J. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase Mol. Aspects Med 2009 30 86 9810.1016/j.mam.2008.08.009Search in Google Scholar

Bilska A., Kryczyk A., Włodek L.: The different aspects of the biological role of glutathione. Postępy Hig. Med. Dośw., 2007; 61: 438-453Bilska A. Kryczyk A. Włodek L. The different aspects of the biological role of glutathione Postępy Hig. Med. Dośw 2007 61 438 453Search in Google Scholar

Ferguson G., Bridge W.: Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Arch. Biochem. Biophys., 2016; 593: 12-23Ferguson G. Bridge W. Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine Arch. Biochem. Biophys 2016 593 12 2310.1016/j.abb.2016.01.017Search in Google Scholar

Lu S.C.: Glutathione synthesis. Biochim. Biophys. Acta, 2013; 1830: 3143-3153Lu S.C. Glutathione synthesis Biochim. Biophys. Acta 2013 1830 3143 315310.1016/j.bbagen.2012.09.008Search in Google Scholar

Li S., Li X., Rozanski G.J.: Regulation of glutathione in cardiac myocytes. J. Mol. Cell. Cardiol., 2003; 35: 1145-1152Li S. Li X. Rozanski G.J. Regulation of glutathione in cardiac myocytes J. Mol. Cell. Cardiol 2003 35 1145 115210.1016/S0022-2828(03)00230-XSearch in Google Scholar

Pompella A., Corti A., Paolicchi A., Giommarelli C., Zunino F.: γ-glutamyltransferase, redox regulation and cancer drug resistance. Curr. Opin. Pharmacol., 2007; 7: 360-366Pompella A. Corti A. Paolicchi A. Giommarelli C. Zunino F. γ-glutamyltransferase, redox regulation and cancer drug resistance Curr. Opin. Pharmacol 2007 7 360 36610.1016/j.coph.2007.04.004Search in Google Scholar

Meister A.: On the discovery of glutathione. Trends. Biochem. Sci., 1988; 13: 185-188Meister A. On the discovery of glutathione Trends. Biochem. Sci 1988 13 185 18810.1016/0968-0004(88)90148-XSearch in Google Scholar

Zarka M.H., Bridge W.J.: Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol., 2017; 11: 631-636Zarka M.H. Bridge W.J. Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study Redox Biol 2017 11 631 63610.1016/j.redox.2017.01.014528448928131081Search in Google Scholar

Franco R., Schoneveld O.J., Pappa A., Panayiotidis M.I.: The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem., 2007; 113: 234-258Franco R. Schoneveld O.J. Pappa A. Panayiotidis M.I. The central role of glutathione in the pathophysiology of human diseases Arch. Physiol. Biochem 2007 113 234 25810.1080/1381345070166119818158646Search in Google Scholar

Forman H.J., Zhang H., Rinna A.: Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009; 30: 1-12Forman H.J. Zhang H. Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis Mol. Aspects Med 2009 30 1 1210.1016/j.mam.2008.08.006269607518796312Search in Google Scholar

Yang Y., Chen Y., Johansson E., Schneider S.N., Shertzer H.G., Nebert D.W., Dalton T.P.: Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase. Biochem. Pharmacol., 2007; 74: 372-381Yang Y. Chen Y. Johansson E. Schneider S.N. Shertzer H.G. Nebert D.W. Dalton T.P. Interaction between the catalytic and modifier subunits of glutamate-cysteine ligase Biochem. Pharmacol 2007 74 372 38110.1016/j.bcp.2007.02.00317517378Search in Google Scholar

Shi Z.Z., Osei-Frimpong J., Kala G., Kala S.V., Barrios R.J., Habib G.M., Lukin D.J., Danney C.M., Matzuk M.M., Lieberman M.W.: Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc. Natl. Acad. Sci. USA, 2000; 97: 5101-5106Shi Z.Z. Osei-Frimpong J. Kala G. Kala S.V. Barrios R.J. Habib G.M. Lukin D.J. Danney C.M. Matzuk M.M. Lieberman M.W. Glutathione synthesis is essential for mouse development but not for cell growth in culture Proc. Natl. Acad. Sci. USA 2000 97 5101 510610.1073/pnas.97.10.51012578810805773Search in Google Scholar

Yang Y., Dieter M.Z., Chen Y., Shertzer H.G., Nebert D.W., Dalton T.P.: Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J. Biol. Chem., 2002; 277: 49446-49452Yang Y. Dieter M.Z. Chen Y. Shertzer H.G. Nebert D.W. Dalton T.P. Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse Novel model system for a severely compromised oxidative stress response. J. Biol. Chem 2002 277 49446 4945210.1074/jbc.M20937220012384496Search in Google Scholar

Mulcahy R.T., Bailey H.H., Gipp J.J.: Up-regulation of γ-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels. Cancer Chemother. Pharmacol., 1994; 34: 67-71Mulcahy R.T. Bailey H.H. Gipp J.J. Up-regulation of γ-glutamylcysteine synthetase activity in melphalan-resistant human multiple myeloma cells expressing increased glutathione levels Cancer Chemother. Pharmacol 1994 34 67 7110.1007/BF006861147513621Search in Google Scholar

Iles K.E., Liu R.M.: Mechanisms of glutamate cysteine ligase (GCL) induction by 4-hydroxynonenal. Free Radic. Biol. Med., 2005; 38: 547-556Iles K.E. Liu R.M. Mechanisms of glutamate cysteine ligase (GCL) induction by 4-hydroxynonenal Free Radic. Biol. Med 2005 38 547 55610.1016/j.freeradbiomed.2004.11.01215683710Search in Google Scholar

Krejsa C.M., Franklin C.C., White C.C., Ledbetter J.A., Schieven G.L., Kavanagh T.J.: Rapid activation of glutamate cysteine ligase following oxidative stress. J. Biol. Chem., 2010; 285: 16116-16124Krejsa C.M. Franklin C.C. White C.C. Ledbetter J.A. Schieven G.L. Kavanagh T.J. Rapid activation of glutamate cysteine ligase following oxidative stress J. Biol. Chem 2010 285 16116 1612410.1074/jbc.M110.116210287148020332089Search in Google Scholar

Liu R.M., Gao L., Choi J., Forman H.J.: Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal. Am. J. Physiol., 1998; 275: L861-L869Liu R.M. Gao L. Choi J. Forman H.J. Gamma-glutamylcysteine synthetase: mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal Am. J. Physiol 1998 275 L861 L86910.1152/ajplung.1998.275.5.L8619815102Search in Google Scholar

Liu R.M., Hu H., Robison T.W., Forman H.J.: Differential enhancement of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase by tert-butylhydroquinone in rat lung epithelial L2 cells. Am. J. Respir. Cell Mol. Biol., 1996; 14: 186-191Liu R.M. Hu H. Robison T.W. Forman H.J. Differential enhancement of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase by tert-butylhydroquinone in rat lung epithelial L2 cells Am. J. Respir. Cell Mol. Biol 1996 14 186 19110.1165/ajrcmb.14.2.86302698630269Search in Google Scholar

Zhang H., Court N., Forman H.J.: Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells. Redox Rep., 2007; 12: 101-106Zhang H. Court N. Forman H.J. Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells Redox Rep 2007 12 101 10610.1179/135100007X162266273048917263920Search in Google Scholar

Benassi B., Fanciulli M., Fiorentino F., Porrello A., Chiorino G., Loda M., Zupi G., Biroccio A.: c-Myc phosphorylation is required for cellular response to oxidative stress. Mol. Cell., 2006; 21: 509519Benassi B. Fanciulli M. Fiorentino F. Porrello A. Chiorino G. Loda M. Zupi G. Biroccio A. c-Myc phosphorylation is required for cellular response to oxidative stress Mol. Cell 2006 21 50951910.1016/j.molcel.2006.01.00916483932Search in Google Scholar

Cai J., Huang Z.Z., Lu S.C.: Differential regulation of γ-glutamylcysteine synthetase heavy and light subunit gene expression. Biochem. J., 1997; 326: 167-172Cai J. Huang Z.Z. Lu S.C. Differential regulation of γ-glutamylcysteine synthetase heavy and light subunit gene expression Biochem. J 1997 326 167 17210.1042/bj326016712186509337864Search in Google Scholar

Lu S.C., Kuhlenkamp J., Garcia-Ruiz C., Kaplowitz N.: Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat. J. Clin. Invest., 1991; 88: 260-269Lu S.C. Kuhlenkamp J. Garcia-Ruiz C. Kaplowitz N. Hormone-mediated down-regulation of hepatic glutathione synthesis in the rat J. Clin. Invest 1991 88 260 26910.1172/JCI115286Search in Google Scholar

Kim S.K., Woodcroft K.J., Khodadadeh S.S., Novak R.F.: Insulin signaling regulates γ-glutamylcysteine ligase catalytic subunit expression in primary cultured rat hepatocytes. J. Pharmacol. Exp. Ther., 2004; 311: 99-108Kim S.K. Woodcroft K.J. Khodadadeh S.S. Novak R.F. Insulin signaling regulates γ-glutamylcysteine ligase catalytic subunit expression in primary cultured rat hepatocytes J. Pharmacol. Exp. Ther 2004 311 99 10810.1124/jpet.104.070375Search in Google Scholar

Eaton D.L., Hamel D.M.: Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione. Toxicol. Appl. Pharmacol., 1994; 126: 145-149Eaton D.L. Hamel D.M. Increase in γ-glutamylcysteine synthetase activity as a mechanism for butylated hydroxyanisole-mediated elevation of hepatic glutathione Toxicol. Appl. Pharmacol 1994 126 145 14910.1006/taap.1994.1100Search in Google Scholar

Urata Y., Honma S., Goto S., Todoroki S., Iida T., Cho S., Honma K., Kondo T.: Melatonin induces γ-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic. Biol. Med., 1999; 27: 838-847Urata Y. Honma S. Goto S. Todoroki S. Iida T. Cho S. Honma K. Kondo T. Melatonin induces γ-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells Free Radic. Biol. Med 1999 27 838 84710.1016/S0891-5849(99)00131-8Search in Google Scholar

Langston J.W., Li W., Harrison L., Aw T.Y.: Activation of promoter activity of the catalytic subunit of γ-glutamylcysteine ligase (GCL) in brain endothelial cells by insulin requires antioxidant response element 4 and altered glycemic status: Implication for GCL expression and GSH synthesis. Free Radic. Biol. Med., 2011; 51: 1749-1757Langston J.W. Li W. Harrison L. Aw T.Y. Activation of promoter activity of the catalytic subunit of γ-glutamylcysteine ligase (GCL) in brain endothelial cells by insulin requires antioxidant response element 4 and altered glycemic status: Implication for GCL expression and GSH synthesis Free Radic. Biol. Med 2011 51 1749 175710.1016/j.freeradbiomed.2011.08.004318833721871559Search in Google Scholar

Kensler T.W., Wakabayashi N., Biswal S.: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007; 47: 89-116Kensler T.W. Wakabayashi N. Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway Annu. Rev. Pharmacol. Toxicol 2007 47 89 11610.1146/annurev.pharmtox.46.120604.14104616968214Search in Google Scholar

Chan K., Han X.D., Kan Y.W.: An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen. Proc. Natl. Acad. Sci. USA, 2001; 98: 4611-4616Chan K. Han X.D. Kan Y.W. An important function of Nrf2 in combating oxidative stress: Detoxification of acetaminophen Proc. Natl. Acad. Sci. USA 2001 98 4611 461610.1073/pnas.0810820983188211287661Search in Google Scholar

Wild A.C., Moinova H.R., Mulcahy R.T.: Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J. Biol. Chem., 1999; 274: 33627-33636Wild A.C. Moinova H.R. Mulcahy R.T. Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2 J. Biol. Chem 1999 274 33627 3363610.1074/jbc.274.47.3362710559251Search in Google Scholar

Chen Y., Shertzer H.G., Schneider S.N., Nebert D.W., Dalton T.P.: Glutamate cysteine ligase catalysis: Dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J. Biol. Chem., 2005; 280: 33766-33774Chen Y. Shertzer H.G. Schneider S.N. Nebert D.W. Dalton T.P. Glutamate cysteine ligase catalysis: Dependence on ATP and modifier subunit for regulation of tissue glutathione levels J. Biol. Chem 2005 280 33766 3377410.1074/jbc.M50460420016081425Search in Google Scholar

Fraser J.A., Kansagra P., Kotecki C., Saunders R.D., McLellan L.I.: The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo. J. Biol. Chem., 2003; 278: 46369-46377Fraser J.A. Kansagra P. Kotecki C. Saunders R.D. McLellan L.I. The modifier subunit of Drosophila glutamate-cysteine ligase regulates catalytic activity by covalent and noncovalent interactions and influences glutathione homeostasis in vivo J. Biol. Chem 2003 278 46369 4637710.1074/jbc.M30803520012954617Search in Google Scholar

Huang C.S., Chang L.S., Anderson M.E., Meister A.: Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J. Biol. Chem., 1993; 268: 19675-19680Huang C.S. Chang L.S. Anderson M.E. Meister A. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase J. Biol. Chem 1993 268 19675 1968010.1016/S0021-9258(19)36569-XSearch in Google Scholar

Levonen A.L., Landar A., Ramachandran A., Ceaser E.K., Dickinson D.A., Zanoni G., Morrow J.D., Darley-Usmar V.M.: Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J., 2004; 378: 373-382Levonen A.L. Landar A. Ramachandran A. Ceaser E.K. Dickinson D.A. Zanoni G. Morrow J.D. Darley-Usmar V.M. Cellular mechanisms of redox cell signalling: Role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products Biochem. J 2004 378 373 38210.1042/bj20031049Search in Google Scholar

Tu Z., Anders M.W.: Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis. Biochem. J., 1998; 336: 675-680Tu Z. Anders M.W. Identification of an important cysteine residue in human glutamate-cysteine ligase catalytic subunit by site-directed mutagenesis Biochem. J 1998 336 675 68010.1042/bj3360675Search in Google Scholar

Backos D.S., Fritz K.S., Roede J.R., Petersen D.R., Franklin C.C.: Posttranslational modification and regulation of glutamatecysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-non-enal. Free Radic. Biol. Med., 2011; 50: 14-26Backos D.S. Fritz K.S. Roede J.R. Petersen D.R. Franklin C.C. Posttranslational modification and regulation of glutamatecysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-non-enal Free Radic. Biol. Med 2011 50 14 2610.1016/j.freeradbiomed.2010.10.694Search in Google Scholar

Hayashi H., Iimuro M., Matsumoto Y., Kaneko M.: Effects of gamma-glutamylcysteine ethyl ester on heart mitochondrial creatine kinase activity: Involvement of sulfhydryl groups. Eur. J. Pharmacol., 1998; 349: 133-136Hayashi H. Iimuro M. Matsumoto Y. Kaneko M. Effects of gamma-glutamylcysteine ethyl ester on heart mitochondrial creatine kinase activity: Involvement of sulfhydryl groups Eur. J. Pharmacol 1998 349 133 13610.1016/S0014-2999(98)00266-0Search in Google Scholar

Toroser D., Yarian C.S., Orr W.C., Sohal R.S.: Mechanisms of γ-glutamylcysteine ligase regulation. Biochim. Biophys. Acta, 2006; 1760: 233-244Toroser D. Yarian C.S. Orr W.C. Sohal R.S. Mechanisms of γ-glutamylcysteine ligase regulation Biochim. Biophys. Acta 2006 1760 233 24410.1016/j.bbagen.2005.10.010Search in Google Scholar

Sekhar K.R., Freeman M.L.: Autophosphorylation inhibits the activity of γ-glutamylcysteine synthetase. J. Enzyme Inhib., 1999; 14: 323-330Sekhar K.R. Freeman M.L. Autophosphorylation inhibits the activity of γ-glutamylcysteine synthetase J. Enzyme Inhib 1999 14 323 33010.3109/14756369909030325Search in Google Scholar

Zhu M., Bowden G.T.: Molecular mechanism(s) for UV-B irradiation-induced glutathione depletion in cultured human keratinocytes. Photochem. Photobiol., 2004; 80: 191-196Zhu M. Bowden G.T. Molecular mechanism(s) for UV-B irradiation-induced glutathione depletion in cultured human keratinocytes Photochem. Photobiol 2004 80 191 19610.1562/2004-02-26-RA-091.1Search in Google Scholar

Soltaninassab S.R., Sekhar K.R., Meredith M.J., Freeman M.L.: Multi-faceted regulation of γ-glutamylcysteine synthetase. J. Cell Physiol., 2000; 182: 163-170Soltaninassab S.R. Sekhar K.R. Meredith M.J. Freeman M.L. Multi-faceted regulation of γ-glutamylcysteine synthetase J. Cell Physiol 2000 182 163 17010.1002/(SICI)1097-4652(200002)182:2<163::AID-JCP4>3.0.CO;2-1Search in Google Scholar

Abdelmegeed M.A., Jang S., Banerjee A., Hardwick J.P., Song B.J.: Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury. Free Radic. Biol. Med., 2013; 60: 211-222Abdelmegeed M.A. Jang S. Banerjee A. Hardwick J.P. Song B.J. Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury Free Radic. Biol. Med 2013 60 211 22210.1016/j.freeradbiomed.2013.02.018Search in Google Scholar

Braidy N., Zarka M., Jugder B.E., Welch J., Jayasena T., Chan D.K.Y., Sachdev P., Bridge W.: The precursor to glutathione (GSH), γ-Glutamylcysteine (GGC), can ameliorate oxidative damage and neuroinflammation induced by Aβ40 oligomers in human astrocytes. Front Aging Neurosci., 2019; 11: 177Braidy N. Zarka M. Jugder B.E. Welch J. Jayasena T. Chan D.K.Y. Sachdev P. Bridge W. The precursor to glutathione (GSH), γ-Glutamylcysteine (GGC), can ameliorate oxidative damage and neuroinflammation induced by Aβ40 oligomers in human astrocytes Front Aging Neurosci 2019 11 17710.3389/fnagi.2019.00177669429031440155Search in Google Scholar

Ristoff E., Larsson A.: Inborn errors in the metabolism of glutathione. Orphanet J. Rare Dis., 2007; 2: 16Ristoff E. Larsson A. Inborn errors in the metabolism of glutathione Orphanet J. Rare Dis 2007 2 1610.1186/1750-1172-2-16185209417397529Search in Google Scholar

Hamilton D., Wu J.H., Alaoui-Jamali M., Batist G.: A novel missense mutation in the γ-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production. Blood, 2003; 102: 725-730Hamilton D. Wu J.H. Alaoui-Jamali M. Batist G. A novel missense mutation in the γ-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production Blood 2003 102 725 73010.1182/blood-2002-11-362212663448Search in Google Scholar

Mañú Pereira M., Gelbart T., Ristoff E., Crain K.C., Bergua J.M., López Lafuente A., Kalko S.G., García Mateos E., Beutler E., Vives Corrons J.L.: Chronic non-spherocytic hemolytic anemia associated with severe neurological disease due to γ-glutamylcysteine synthetase deficiency in a patient of Moroccan origin. Haematologica, 2007; 92: e102-105Mañú Pereira M. Gelbart T. Ristoff E. Crain K.C. Bergua J.M. López Lafuente A. Kalko S.G. García Mateos E. Beutler E. Vives Corrons J.L. Chronic non-spherocytic hemolytic anemia associated with severe neurological disease due to γ-glutamylcysteine synthetase deficiency in a patient of Moroccan origin Haematologica 2007 92 e102 10510.3324/haematol.1123818024385Search in Google Scholar

Gutowicz M.: The influence of reactive oxygen species on the central nervous system. Postępy Hig. Med. Dośw., 2011; 65: 104113Gutowicz M. The influence of reactive oxygen species on the central nervous system Postępy Hig. Med. Dośw 2011 65 10411310.5604/17322693.93348621357998Search in Google Scholar

Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J.: Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients, 2012; 4: 1399-1440Johnson W.M. Wilson-Delfosse A.L. Mieyal J.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases Nutrients 2012 4 1399 144010.3390/nu4101399349700223201762Search in Google Scholar

Pearce R.K., Owen A., Daniel S., Jenner P., Marsden C.D.: Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J. Neural. Transm., 1997; 104: 661-677Pearce R.K. Owen A. Daniel S. Jenner P. Marsden C.D. Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease J. Neural. Transm 1997 104 661 67710.1007/BF012918849444566Search in Google Scholar

Garrido M., Tereshchenko Y., Zhevtsova Z., Taschenberger G., Bähr M., Kügler S.: Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol., 2011; 121: 475-485Garrido M. Tereshchenko Y. Zhevtsova Z. Taschenberger G. Bähr M. Kügler S. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons Acta Neuropathol 2011 121 475 48510.1007/s00401-010-0791-x305835521191602Search in Google Scholar

Sabens E.A., Distler A.M., Mieyal J.J.: Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: Implications for therapy of Parkinson’s disease. Biochemistry, 2010; 49: 2715-2724Sabens E.A. Distler A.M. Mieyal J.J. Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: Implications for therapy of Parkinson’s disease Biochemistry 2010 49 2715 272410.1021/bi9018658320193920141169Search in Google Scholar

Feng W., Rosca M., Fan Y., Hu Y., Feng P., Lee H.G., Monnier V.M., Fan X.: Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum. Mol. Genet., 2017; 26: 1376-1390Feng W. Rosca M. Fan Y. Hu Y. Feng P. Lee H.G. Monnier V.M. Fan X. Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration Hum. Mol. Genet 2017 26 1376 139010.1093/hmg/ddx040607507828158580Search in Google Scholar

Fernandez-Fernandez S., Bobo-Jimenez V., Requejo-Aguilar R., Gonzalez-Fernandez S., Resch M., Carabias-Carrasco M., Ros J., Almeida A., Bolaños J.P.: Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol., 2018; 19: 52-61Fernandez-Fernandez S. Bobo-Jimenez V. Requejo-Aguilar R. Gonzalez-Fernandez S. Resch M. Carabias-Carrasco M. Ros J. Almeida A. Bolaños J.P. Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function Redox Biol 2018 19 52 6110.1016/j.redox.2018.08.003609245030107295Search in Google Scholar

Liu R.M.: Down-regulation of γ-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging. J. Neurosci. Res., 2002; 68: 344-351Liu R.M. Down-regulation of γ-glutamylcysteine synthetase regulatory subunit gene expression in rat brain tissue during aging J. Neurosci. Res 2002 68 344 35110.1002/jnr.1021712111865Search in Google Scholar

Pessayre D., Fromenty B., Berson A., Robin M.A., Lettéron P., Moreau R., Mansouri A.: Central role of mitochondria in drug-induced liver injury. Drug Metab. Rev., 2012; 44: 34-87Pessayre D. Fromenty B. Berson A. Robin M.A. Lettéron P. Moreau R. Mansouri A. Central role of mitochondria in drug-induced liver injury Drug Metab. Rev 2012 44 34 8710.3109/03602532.2011.60408621892896Search in Google Scholar

Chen Y., Dong H., Thompson D.C., Shertzer H.G., Nebert D.W., Vasiliou V.: Glutathione defense mechanism in liver injury: Insights from animal models. Food Chem. Toxicol., 2013; 60: 38-44Chen Y. Dong H. Thompson D.C. Shertzer H.G. Nebert D.W. Vasiliou V. Glutathione defense mechanism in liver injury: Insights from animal models Food Chem. Toxicol 2013 60 38 4410.1016/j.fct.2013.07.008380118823856494Search in Google Scholar

Chen Y., Yang Y., Miller M.L., Shen D., Shertzer H.G., Stringer K.F., Wang B., Schneider S.N., Nebert D.W., Dalton T.P.: Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology, 2007; 45: 11181128Chen Y. Yang Y. Miller M.L. Shen D. Shertzer H.G. Stringer K.F. Wang B. Schneider S.N. Nebert D.W. Dalton T.P. Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure Hepatology 2007 45 1118112810.1002/hep.2163517464988Search in Google Scholar

McConnachie L.A., Mohar I., Hudson F.N., Ware C.B., Ladiges W.C., Fernandez C., Chatterton-Kirchmeier S., White C.C., Pierce R.H., Kavanagh T.J.: Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol. Sci., 2007; 99: 628-636McConnachie L.A. Mohar I. Hudson F.N. Ware C.B. Ladiges W.C. Fernandez C. Chatterton-Kirchmeier S. White C.C. Pierce R.H. Kavanagh T.J. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice Toxicol. Sci 2007 99 628 63610.1093/toxsci/kfm16517584759Search in Google Scholar

Jaeschke H., McGill M.R., Williams C.D., Ramachandran A.: Current issues with acetaminophen hepatotoxicity – a clinically relevant model to test the efficacy of natural products. Life Sci., 2011; 88: 737-745Jaeschke H. McGill M.R. Williams C.D. Ramachandran A. Current issues with acetaminophen hepatotoxicity – a clinically relevant model to test the efficacy of natural products Life Sci 2011 88 737 74510.1016/j.lfs.2011.01.025307652621296090Search in Google Scholar

Pervaiz S., Clement M.V.: Tumor intracellular redox status and drug resistance-serendipity or a causal relationship? Curr. Pharm. Des., 2004; 10: 1969-1977Pervaiz S. Clement M.V. Tumor intracellular redox status and drug resistance-serendipity or a causal relationship? Curr Pharm. Des 2004 10 1969 197710.2174/1381612043384411Search in Google Scholar

Ballatori N., Krance S.M., Notenboom S., Shi S., Tieu K., Hammond C.L.: Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem., 2009; 390: 191-214Ballatori N. Krance S.M. Notenboom S. Shi S. Tieu K. Hammond C.L. Glutathione dysregulation and the etiology and progression of human diseases Biol. Chem 2009 390 191 21410.1515/BC.2009.033275615419166318Search in Google Scholar

Estrela J.M., Ortega A., Obrador E.: Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci., 2006; 43: 143-181Estrela J.M. Ortega A. Obrador E. Glutathione in cancer biology and therapy Crit. Rev. Clin. Lab. Sci 2006 43 143 18110.1080/1040836050052387816517421Search in Google Scholar

Traverso N., Ricciarelli R., Nitti M., Marengo B., Furfaro A.L., Pronzato M.A., Marinari U.M., Domenicotti C.: Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013; 2013: 972913Traverso N. Ricciarelli R. Nitti M. Marengo B. Furfaro A.L. Pronzato M.A. Marinari U.M. Domenicotti C. Role of glutathione in cancer progression and chemoresistance Oxid. Med. Cell. Longev 2013 2013 97291310.1155/2013/972913367333823766865Search in Google Scholar

Briehl M.M., Tome M.E., Wilkinson S.T., Jaramillo M.C., Lee K.: Mitochondria and redox homoeostasis as chemotherapeutic targets. Biochem. Soc. Trans., 2014; 42: 939-944Briehl M.M. Tome M.E. Wilkinson S.T. Jaramillo M.C. Lee K. Mitochondria and redox homoeostasis as chemotherapeutic targets Biochem. Soc. Trans 2014 42 939 94410.1042/BST20140087556432725109983Search in Google Scholar

Jang J.H., Surh Y.J.: Bcl-2 attenuation of oxidative cell death is associated with up-regulation of γ-glutamylcysteine ligase via constitutive NF-κB activation. J. Biol. Chem., 2004; 279: 38779-38786Jang J.H. Surh Y.J. Bcl-2 attenuation of oxidative cell death is associated with up-regulation of γ-glutamylcysteine ligase via constitutive NF-κB activation J. Biol. Chem 2004 279 38779 3878610.1074/jbc.M40637120015208316Search in Google Scholar

Järvinen K., Soini Y., Kahlos K., Kinnula V.L.: Overexpression of γ-glutamylcysteine synthetase in human malignant mesothelioma. Hum. Pathol., 2002; 33: 748-755Järvinen K. Soini Y. Kahlos K. Kinnula V.L. Overexpression of γ-glutamylcysteine synthetase in human malignant mesothelioma Hum. Pathol 2002 33 748 75510.1053/hupa.2002.12619112196927Search in Google Scholar

Kim A.D., Zhang R., Han X., Kang K.A., Piao M.J., Maeng Y.H., Chang W.Y., Hyun J.W.: Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol. Med. Rep., 2015; 12: 4314-4319Kim A.D. Zhang R. Han X. Kang K.A. Piao M.J. Maeng Y.H. Chang W.Y. Hyun J.W. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues Mol. Med. Rep 2015 12 4314 431910.3892/mmr.2015.390226059756Search in Google Scholar

Nguyen A., Loo J.M., Mital R., Weinberg E.M., Man F.Y., Zeng Z., Paty P.B., Saltz L., Janjigian Y.Y., de Stanchina E., Tavazoie S.F.: PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis. J. Clin. Invest., 2016; 126: 681-694Nguyen A. Loo J.M. Mital R. Weinberg E.M. Man F.Y. Zeng Z. Paty P.B. Saltz L. Janjigian Y.Y. de Stanchina E. Tavazoie S.F. PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis J. Clin. Invest 2016 126 681 69410.1172/JCI83587473116526784545Search in Google Scholar

Sun J., Zhou C., Ma Q., Chen W., Atyah M., Yin Y., Fu P., Liu S., Hu B., Ren N., Zhou H.: High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J. Cancer., 2019; 10: 3333-3343Sun J. Zhou C. Ma Q. Chen W. Atyah M. Yin Y. Fu P. Liu S. Hu B. Ren N. Zhou H. High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection J. Cancer 2019 10 3333 334310.7150/jca.29769660342431293636Search in Google Scholar

Fiorillo M., Sotgia F., Sisci D., Cappello A.R., Lisanti M.P.: Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer. Oncotarget, 2017; 8: 20309-20327Fiorillo M. Sotgia F. Sisci D. Cappello A.R. Lisanti M.P. Mitochondrial “power” drives tamoxifen resistance: NQO1 and GCLC are new therapeutic targets in breast cancer Oncotarget 2017 8 20309 2032710.18632/oncotarget.15852538676428411284Search in Google Scholar

Hiyama N., Ando T., Maemura K., Sakatani T., Amano Y., Watanabe K., Kage H., Yatomi Y., Nagase T., Nakajima J., Takai D.: Glutamate-cysteine ligase catalytic subunit is associated with cisplatin resistance in lung adenocarcinoma. Jpn. J. Clin. Oncol., 2018; 48: 303-307Hiyama N. Ando T. Maemura K. Sakatani T. Amano Y. Watanabe K. Kage H. Yatomi Y. Nagase T. Nakajima J. Takai D. Glutamate-cysteine ligase catalytic subunit is associated with cisplatin resistance in lung adenocarcinoma Jpn. J. Clin. Oncol 2018 48 303 30710.1093/jjco/hyy013589286029474642Search in Google Scholar

Lin L.C., Chen C.F., Ho C.T., Liu J.J., Liu T.Z., Chern C.L.: γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells. Life Sci., 2018; 198: 25-31Lin L.C. Chen C.F. Ho C.T. Liu J.J. Liu T.Z. Chern C.L. γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells Life Sci 2018 198 25 3110.1016/j.lfs.2018.02.01529549912Search in Google Scholar

Liu C.W., Hua K.T., Li K.C., Kao H.F., Hong R.L., Ko J.Y., Hsiao M., Kuo M.L., Tan C.T.: Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate-cysteine ligase catalytic subunit in head and neck squamous cell carcinoma. Mol. Cancer Ther., 2017; 16: 1421-1434Liu C.W. Hua K.T. Li K.C. Kao H.F. Hong R.L. Ko J.Y. Hsiao M. Kuo M.L. Tan C.T. Histone methyltransferase G9a drives chemotherapy resistance by regulating the glutamate-cysteine ligase catalytic subunit in head and neck squamous cell carcinoma Mol. Cancer Ther 2017 16 1421 143410.1158/1535-7163.MCT-16-0567-T28265008Search in Google Scholar

Nowakowska A., Tarasiuk J.: Invasion and metastasis of tumour cells resistant to chemotherapy. Postępy Hig. Med. Dośw., 2017; 71: 380-397Nowakowska A. Tarasiuk J. Invasion and metastasis of tumour cells resistant to chemotherapy Postępy Hig. Med. Dośw 2017 71 380 39710.5604/01.3001.0010.382228513462Search in Google Scholar

Almusafri F., Elamin H.E., Khalaf T.E., Ali A., Ben-Omran T., El-Hattab A.W.: Clinical and molecular characterization of 6 children with glutamate-cysteine ligase deficiency causing hemolytic anemia. Blood Cells Mol. Dis., 2017; 65: 73-77Almusafri F. Elamin H.E. Khalaf T.E. Ali A. Ben-Omran T. El-Hattab A.W. Clinical and molecular characterization of 6 children with glutamate-cysteine ligase deficiency causing hemolytic anemia Blood Cells Mol. Dis 2017 65 73 7710.1016/j.bcmd.2017.05.01128571779Search in Google Scholar

Chen Y., Johansson E., Yang Y., Miller M.L., Shen D., Orlicky D.J., Shertzer H.G., Vasiliou V., Nebert D.W., Dalton T.P.: Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclcknockout mice, providing a model for hepatic cirrhosis. J. Hepatol., 2010; 53: 1085-1094Chen Y. Johansson E. Yang Y. Miller M.L. Shen D. Orlicky D.J. Shertzer H.G. Vasiliou V. Nebert D.W. Dalton T.P. Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclcknockout mice, providing a model for hepatic cirrhosis J. Hepatol 2010 53 1085 109410.1016/j.jhep.2010.05.028297066320810184Search in Google Scholar

Rushworth G.F., Megson I.L.: Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther., 2014; 141: 150-159Rushworth G.F. Megson I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits Pharmacol. Ther 2014 141 150 15910.1016/j.pharmthera.2013.09.00624080471Search in Google Scholar

Witschi A., Reddy S., Stofer B., Lauterburg B.H.: The systemic availability of oral glutathione. Eur. J. Clin. Pharmacol., 1992; 43: 667-669Witschi A. Reddy S. Stofer B. Lauterburg B.H. The systemic availability of oral glutathione Eur. J. Clin. Pharmacol 1992 43 667 66910.1007/BF022849711362956Search in Google Scholar

Levy E.J., Anderson M.E., Meister A.: Transport of glutathione diethyl ester into human cells. Proc. Natl. Acad. Sci. USA, 1993; 90: 9171-9175Levy E.J. Anderson M.E. Meister A. Transport of glutathione diethyl ester into human cells Proc. Natl. Acad. Sci. USA 1993 90 9171 917510.1073/pnas.90.19.9171475248415673Search in Google Scholar

Du K., Ramachandran A., Jaeschke H.: Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016; 10: 148-156Du K. Ramachandran A. Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential Redox Biol 2016 10 148 15610.1016/j.redox.2016.10.001506564527744120Search in Google Scholar

Quintana-Cabrera R., Fernandez-Fernandez S., Bobo-Jimenez V., Escobar J., Sastre J., Almeida A., Bolaños J.P.: γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat. Commun., 2012; 3: 718Quintana-Cabrera R. Fernandez-Fernandez S. Bobo-Jimenez V. Escobar J. Sastre J. Almeida A. Bolaños J.P. γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor Nat. Commun 2012 3 71810.1038/ncomms1722331687722395609Search in Google Scholar

Chandler S.D., Zarka M.H., Vinaya Babu S.N., Suhas Y.S., Raghunatha Reddy K.R., Bridge W.J.: Safety assessment of gammaglutamylcysteine sodium salt. Regul. Toxicol. Pharmacol., 2012; 64: 17-25Chandler S.D. Zarka M.H. Vinaya Babu S.N. Suhas Y.S. Raghunatha Reddy K.R. Bridge W.J. Safety assessment of gammaglutamylcysteine sodium salt Regul. Toxicol. Pharmacol 2012 64 17 2510.1016/j.yrtph.2012.05.00822698997Search in Google Scholar

Kobayashi H., Kurokawa T., Kitahara S., Nonami T., Harada A., Nakao A., Sugiyama S., Ozawa T., Takagi H.: The effects of gamma-glutamylcysteine ethyl ester, a prodrug of glutathione, on ischemia-reperfusion-induced liver injury in rats. Transplantation, 1992; 54: 414-418Kobayashi H. Kurokawa T. Kitahara S. Nonami T. Harada A. Nakao A. Sugiyama S. Ozawa T. Takagi H. The effects of gamma-glutamylcysteine ethyl ester, a prodrug of glutathione, on ischemia-reperfusion-induced liver injury in rats Transplantation 1992 54 414 41810.1097/00007890-199209000-000051412719Search in Google Scholar

Le T.M., Jiang H., Cunningham G.R., Magarik J.A., Barge W.S., Cato M.C., Farina M., Rocha J.B., Milatovic D., Lee E. i wsp.: γ-Glutamylcysteine ameliorates oxidative injury in neurons and astrocytes in vitro and increases brain glutathione in vivo. Neurotoxicology, 2011; 32: 518-525Le T.M. Jiang H. Cunningham G.R. Magarik J.A. Barge W.S. Cato M.C. Farina M. Rocha J.B. Milatovic D. Lee E. i wsp. γ-Glutamylcysteine ameliorates oxidative injury in neurons and astrocytes in vitro and increases brain glutathione in vivo Neurotoxicology 2011 32 518 52510.1016/j.neuro.2010.11.008307979221159318Search in Google Scholar

Yang Y., Li L., Hang Q., Fang Y., Dong X., Cao P., Yin Z., Luo L.: γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol., 2019; 20: 157-166Yang Y. Li L. Hang Q. Fang Y. Dong X. Cao P. Yin Z. Luo L. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level Redox Biol 2019 20 157 16610.1016/j.redox.2018.09.019619743830326393Search in Google Scholar

Salama S.A., Arab H.H., Hassan M.H., Al Robaian M.M., Maghrabi I.A.: Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J. Trace. Elem. Med. Biol., 2019; 52: 74-82Salama S.A. Arab H.H. Hassan M.H. Al Robaian M.M. Maghrabi I.A. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death J. Trace. Elem. Med. Biol 2019 52 74 8210.1016/j.jtemb.2018.12.00330732903Search in Google Scholar

Salama S.A., Arab H.H., Maghrabi I.A., Hassan M.H., AlSaeed M.S.: Gamma-glutamyl cysteine attenuates tissue damage and enhances tissue regeneration in a rat model of lead-induced nephrotoxicity. Biol. Trace Elem. Res., 2016; 173: 96-107Salama S.A. Arab H.H. Maghrabi I.A. Hassan M.H. AlSaeed M.S. Gamma-glutamyl cysteine attenuates tissue damage and enhances tissue regeneration in a rat model of lead-induced nephrotoxicity Biol. Trace Elem. Res 2016 173 96 10710.1007/s12011-016-0624-426767370Search in Google Scholar

eISSN:
1732-2693
Language:
English