Cite

1. World Green Building Council, 2017. Global Status Report │UN environment and international energy agency [www Document]. URL. https://www.worldgbc.org/news-media/global-status-report-2017 Search in Google Scholar

2. Haung H., Gao X., Wang H., Ye H., 2017. Influence of rice husk on strength and permeability of ultra-high performance concrete, Construction and Building Materials. Vol. 149: 621 – 628, doi.org/10.1016/j.conbuildmat.2017.05.15510.1016/j.conbuildmat.2017.05.155 Search in Google Scholar

3. Andrew R.M., 2019. Global CO2 emission from cement production, 1928 – 2018, Earth System Science Data, Vol. 11, Iss. 4: 1675 – 1710, doi.org/10.5194/essd-11-1675-201910.5194/essd-11-1675-2019 Search in Google Scholar

4. Sun J., Xu K., Shi C., Ma J., Li W., Shen X., 2017. Influence of core/shell TiO2@SiO2 nanoparticles on cement hydration, Construction and Building Materials. Vol. 156; 114 – 122, doi.org/10.1016/j.conbuildmat.2019.08.12410.1016/j.conbuildmat.2017.08.124 Search in Google Scholar

5. Teixeira K.P., Rocha I.P., Carneiro L.D., Flores J., Dauer E.A., Ghahremaninezhad A., 2016. The effect of curing temperature on the properties of cement pastes modified with TiO2 nanoparticles, Materials, Vol. 9, Iss. 11: 952 – 967, doi.org/10.3390/ma911095210.3390/ma9110952545723428774073 Search in Google Scholar

6. Khaloo A., Mobini M.H., Hosseini P., 2016. Influence of different types of nano-SiO2 particles on properties of high-performance concrete, Construction and Building Materials. Vol. 113; 188 – 201, doi.org/10.1016/j.conbuildmat.2016.03.04110.1016/j.conbuildmat.2016.03.041 Search in Google Scholar

7. Liu J., Li Q., Xu S., 2015. Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials. Vol. 101; 892 – 901, doi.org/10.1016/j.conbuildmat.2015.10.14910.1016/j.conbuildmat.2015.10.149 Search in Google Scholar

8. Pisello A.L., D’alessandro A., Sambuco S., Rallini M., Ubertini F., Asdrubali F., Materazzi A.L., Cotana F., 2017. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Solar Energy Materials and Solar Cells, Vol. 161: 77 – 88, doi.org/10.1016/j.solmat.2016.11.03010.1016/j.solmat.2016.11.030 Search in Google Scholar

9. Yoo D., You I., Lee S., 2017. Electrical properties of cement-based composites with carbon Nanotubes, Graphene, and Graphite Nanofibres. Sensors, Vol. 17, No. 5: 1064 – 1076, doi.org/10.3390/s1705106410.3390/s17051064546966928481296 Search in Google Scholar

10. Cadavid-Giraldo N., Velez-Gallego M.C., Restrepo-Boland A., 2020. Carbon emissions reduction and financial effects of a cap and tax system on an operating supply chain in the cement sector. Journal of Cleaner Production. Vol. 275: 122583, doi.org/10.1016/j.jclepro.2020.12258310.1016/j.jclepro.2020.122583 Search in Google Scholar

11. Snellings R., 2016. Assessing, Understanding and Unlocking Supplementary Cementitious Materials, RILEM Technical Letters, Vol. 1: 50 – 55, doi.org/10.21809/rilemtechlett.2016.1210.21809/rilemtechlett.2016.12 Search in Google Scholar

12. Serivener K., Martirena F., Bishnoi S., Maity S., 2018. Calcined Clay limestone cements (LC3), Cement and Concrete Research. Vol. 114: 49 – 56, doi.org/10.1016/j.cemconres.2017.08.01710.1016/j.cemconres.2017.08.017 Search in Google Scholar

13. Charitha V., Athira V.S., Jittin V., Bahurudeen A., Nanthagopalan P., 2021. Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials. Vol. 285; 122851, doi.org/10.1016/j.conbuildmat.2021.12285110.1016/j.conbuildmat.2021.122851 Search in Google Scholar

14. Robert U.W., Etuk S.E., Umoren G.P., Agbasi O.E., 2019. Assessment of Thermal and Mechanical Properties of Composite Board produced from Coconut (Cocos nucifera) Husks, Waste Newspapers, and Cassava Starch, International Journal of Thermophysics Vol. 40, No. 9: 83, doi.org/10.1007/s10765-019-2547-810.1007/s10765-019-2547-8 Search in Google Scholar

15. Bőger T., Bianchi S., Salzer C., Pichelin F., 2018.Binderless boards made of milled coconut husk: an analysis of the technical feasibility and process restraints. International Wood Products Journal, Vol. 9, No.1: 3–8, doi.org/10.1080/20426445.2017.140075610.1080/20426445.2017.1400756 Search in Google Scholar

16. Panyakaew S., Fotios S., 2011. New Thermal Insulation boards made from coconut husk and bagasse, Energy and Buildings, Vol. 43, No. 7: 1732 – 1739, doi.org/10.1016/j.enbuild.2011.03.01510.1016/j.enbuild.2011.03.015 Search in Google Scholar

17. Glowacki B., Barbu M.C., Van Wijck J., Chaowana P., 2019. The use of coconut husk in high pressure laminate production, Journal of Tropical Forest Science, Vol. 24, No. 1: 27 – 36 Search in Google Scholar

18. Zafar S.,2021. Energy Potential of Coconut Biomass, Bioenergy Consult, Last accessed: March 19, 2021, www.bioenergyconsult.com Search in Google Scholar

19. Tajuddin M., Ahmed Z., Ismail H., 2016. A review of natural fibers and processing operations for the production of binderless boards. BioResources, Vol. 11, No. 2: 5600 – 561710.15376/biores.11.2.Tajuddin Search in Google Scholar

20. Gui Q., Qin M., Li K., 2016. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation, Cement and Concrete Research. Vol. 89: 109 – 11910.1016/j.cemconres.2016.08.009 Search in Google Scholar

21. Xiao L., Ren Z., Shi W., Wei X., 2016. Experimental Study on Chloride permeability in concrete by non-contact electrical resistivity measurement and RCM. Construction and Building Materials. Vol. 123: 27 – 34, doi.org/10.1016/j.conbuildmat.2016.06.11010.1016/j.conbuildmat.2016.06.110 Search in Google Scholar

22. Wang Y., Gong F., Ueda T., Zhang D., 2014. Theoretical Model for estimation of ice content of concrete by using electrical measurements. Procedia Engineering, Vol. 95: 366 – 375, doi.org/10.1016/j.proeng.2014.12.19510.1016/j.proeng.2014.12.195 Search in Google Scholar

23. Gopalakrishnan R., Vignesh B., Jeyalakshmi R., 2020. Mechanical, electrical, and microstructural studies on mamo-TiO2admixtured cement mortar cured with industrial waste water. Engineering Research Express. Vol. 2: 025010, doi.org/10.1088/2631-8695/ab899c10.1088/2631-8695/ab899c Search in Google Scholar

24. ASTM C136/136M, 2019. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA Search in Google Scholar

25. Robert U.W., Etuk S.E., Agbasi O.E., Okorie U.S., Abdulrazzaq Z.T., Anonaba A.U., Ojo O.T., 2021. On the hygrothermal properties of sandcrete blocks produced with sawdust as partial replacement of sand. Journal of the Mechanical Behavior of Materials. Vol. 30, No. 1: 144 – 155, doi.org/10.1515/jmbm-2021-001510.1515/jmbm-2021-0015 Search in Google Scholar

26. Yahaya M.D., 2009. Physico-chemical classification of Nigerian cement. Australian Journal of Technology. Vol. 12, No. 3: 164 – 174 Search in Google Scholar

27. Okwadha G.D.O., 2016. Partial Replacement of Cement b Plant solid waste ash in concrete production. IOSR Journal of Mechanical and Civil Engineering. Vol. 13, No. 5: 35 – 40, doi.org/10.9790/1684-130503354010.9790/1684-1305033540 Search in Google Scholar

28. Robert U.W., Etuk S.E., Agbasi O.E., Iboh U.A., Ekpo S.S., 2020.Temperature – dependent Electrical Characteristics of Disc-shaped Compacts fabricated using Calcined Eggshell Nanopowder and Dry Cassava Starch. Powder Metallurgy Progress. Vol. 20, Iss. 1: 12 – 20, doi.org/10.2478/pmp-2020-000210.2478/pmp-2020-0002 Search in Google Scholar

29. Guiling X., Xiaoping C., Cai L., Pan X., Changsui Z., 2016. Experimental investigation on the flowability properties of cohesive carbonaceous powders, Journal of Particulate Science and Technology, 35(3); 322 – 329. doi.org/10.1080/02726351.2016.115491010.1080/02726351.2016.1154910 Search in Google Scholar

30. Lu H., Guo X., Liu Y., Gong X., 2015. Effects of particle size on flow mode and flow characteristics of pulverised coal, Kona Powder Part I., 32; 143 – 53. doi.org/10.14356/kona.201500210.14356/kona.2015002 Search in Google Scholar

31. USP, Powder Flow. In: The United States Pharmacopeia 30-National Formulary 25 Convention, Rockville, 2007. Search in Google Scholar

32. ASTM C618, 2019. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in concrete, ASTM International, West Conshohocken, PA Search in Google Scholar

33. Ternero F., Rosa L.G., Urban P., Montes J.M., Cuevas F.G., 2021. Influence of Total porosity on the properties of sintered materials – A Review, Metals, Vol. 11, No. 5: 730, doi.org/10.3390/met1105073010.3390/met11050730 Search in Google Scholar

34. Tumidajski P.J., 1996. Electrical conductivity of Portland Cement Mortars. Cement and Concrete Research. Vol. 26, No. 4: 529 - 53410.1016/0008-8846(96)00027-0 Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials