In this study, S235JR structural steel samples in uncoated condition and coated (shop-primer) in different thicknesses were welded by MAG (Metal Active Gas) welding method, and the effects of these applications on the mechanical and microstructure properties of the material were investigated. In the experimental studies, the first specimen group were used without any sandblasting and coating application, the second group specimens were sandblasted at Sa 2 ½ degree, and 25 µm, 50 µm, and 75 µm coatings were applied to the specimens in the other group. Surface conditions and coating thicknesses were selected as the variable parameters. With the examination of the radiography films, it was observed that the surface conditions affected the welded joint. As a result of the study, it was observed that altered coating thicknesses caused defects in the welding zone. It was determined that the coating thickness partially affected the mechanical properties, and the highest hardness values occurred in the weld zone in all samples. Relatively low values were obtained in tensile, bending and Charpy impact tests performed on sample groups with 75 µm coating thickness. The results were verified by the surface fracture, SEM, and EDS studies.

Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials