Cite

Coconut husk is generated yearly as waste in large quantities but majorly under-utilized. Also, as a result of high embodied carbon, cement production is one of the largest contributors to construction sector carbon footprint. Since accumulation of unmanaged agro-waste like coconut husk has an increased environmental concern due to its pollution effect, recycling it into sustainable construction materials is a viable solution for future generation. In this study, experiments were performed to investigate the influence of coconut husk ash nanomaterial (CHAN) inclusion on electrical characteristics of plain cement paste (BCP) and mortar (CSM) samples at curing ages of 7 and 28 days. The results showed increase in electrical resistivity, thermal constant, and activation energy with curing duration for heating and cooling cycles of BCP and CSM. With inclusion of CHAN, the developed cement paste (CAP) and mortar (CASM) possessed lower values in all cases compared to their counterparts. Also, during heating at 28 days, both the CAP and CASM exhibited decrease in thermal constant. Though electrical resistance of all the samples varied inversely with temperature, CAP and CASM were found to possess greater potentials to make building structures intrinsically smart. Hence, in addition to solving disposal problems, utilization of coconut husks as described herein could enhance development of safe, inexpensive, and sustainable buildings that have large temperature sensing volume.

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials