Open Access

X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures


Cite

1. Proff C., Abolhassani S., Lemaignan C., Oxidation behaviour of zirconium alloys and their precipitates – A mechanistic study. J. Nucl. Mater. 432 (2013) 222–238.10.1016/j.jnucmat.2012.06.026Search in Google Scholar

2. Allen T.R., Konings R.J.M., Motta A.T., Corrosion of zirconium alloys. [In] Comprehensive Nuclear Materials, R.J.M Konings. (ed.), Elsevier, Amsterdam, 2012, pp. 49–68.10.1016/B978-0-08-056033-5.00063-XSearch in Google Scholar

3. Park K., Yang S., Ho K., The effect of high pressure steam on the oxidation of low-Sn Zircaloy-4 at temperatures between 700 and 900 °C. J. Nucl. Mater. 420 (2012) 39–48.10.1016/j.jnucmat.2011.09.014Search in Google Scholar

4. Steinbrück M., Böttcher M., Air oxidation of Zircaloy-4, M5 and ZIRLO cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276–285.10.1016/j.jnucmat.2011.04.012Search in Google Scholar

5. Coindreau C., Duriez C., Ederli S. : Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application. J. Nucl. Mater. 405 (2010) 207–215.10.1016/j.jnucmat.2010.07.038Search in Google Scholar

6. Selmi N., Sari A., Study of oxidation kinetics in air of Zircaloy-4 by in situ X-Ray diffraction. Adv. Mater. Phys. Chem. 3 (2013) 168–173.10.4236/ampc.2013.32023Search in Google Scholar

7. Sawabe T., Sonoda T., Furuya M., Kitajima S., Kinoshita M., Tokiwai M., Microstructure of oxide layers formed on zirconium alloy by air oxidation, uniform corrosion and fresh-green surface modification. J. Nucl. Mater. 419 (2011) 310–319.10.1016/j.jnucmat.2011.05.028Search in Google Scholar

8. Gong W, Zhang H, Qiao Y., Tian H., Ni X., Li Z., Wang X., Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4. Corr. Sci. 74 (2013) 323–331.10.1016/j.corsci.2013.05.007Search in Google Scholar

9. Harlow W., Ghassemi H., Taheri M.L., Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM. J. Nucl. Mater. 474 (2016) 126–133.10.1016/j.jnucmat.2016.03.009Search in Google Scholar

10. Ishii Y., Sykes J.M., Microstructure of oxide layers formed on Zircaloy-2 in air at 450°C. Mater. High Temp. 17 (2014) 23–28.10.1179/mht.2000.005Search in Google Scholar

11. Gosset D., Le Saux M.L., Simeone D., Gilbon D. : New insights in structural characterization of zirconium alloys oxidation at high temperature. J. Nucl. Mater. 429 (2012) 19–24.10.1016/j.jnucmat.2012.05.003Search in Google Scholar

12. Gosset D., Le Saux M.L., In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature. J. Nucl. Mater. 458 (2015) 245–252.10.1016/j.jnucmat.2014.12.067Search in Google Scholar

13. Baek J.H., Jeong Y.H., Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152–159.10.1016/j.jnucmat.2007.02.011Search in Google Scholar

14. Yamato M, Nagase F, Amaya M., Reduction in the onset time of breakaway oxidation on Zircaloy cladding ruptured under simulated LOCA conditions. J. Nucl. Mater. 445 (2014) 78–83.10.1016/j.jnucmat.2013.10.044Search in Google Scholar

15. Fettré D., Favergeon J., Bouvier S., Detection of breakaway for a high-temperature oxidation of pure zirconium using acoustic emission correlated to thermogravimetry. Oxid. Met. 87 (2017) 367–379.10.1007/s11085-017-9737-1Search in Google Scholar

16. Kim H.G., Kim I.H., Choi B.K., Park Y.Y., A study of the breakaway oxidation behavior of zirconium cladding materials. J. Nucl. Mater. 418 (2011) 186–197.10.1016/j.jnucmat.2011.06.039Search in Google Scholar

17. Kim H.H., Kim J.H., Moon J.Y., Lee H.S., Kim J.J., Chai Y.S., High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient. J. Mater. Sci. Technol. 26 (2010) 827–832.10.1016/S1005-0302(10)60132-6Search in Google Scholar

18. Zienkiewicz N., Paradowska J., Serbinski W., Gajowiec G., Hernik A., Zielinski A., Oxidation and hydrogen behavior in Zr-2Mn alloy. Adv. Mater. Sci. 18 (2018) 37–48.10.1515/adms-2017-0030Search in Google Scholar

19. Annand K., Nord M., Maclaren I., Gass M., The corrosion of Zr(Fe, Cr)2 and Zr2Fe secondary phase particles in Zircaloy-4 under 350 °C pressurised water conditions. Corr. Sci. 128 (2017) 213–223.10.1016/j.corsci.2017.09.014Search in Google Scholar

20. Park D.J., Park J.Y., Jeong J.H., Microstructural analysis and XPS investigation of nodular oxides formed on Zircaloy-4. J. Nucl. Mater. 412 (2011) 233–238.10.1016/j.jnucmat.2011.03.010Search in Google Scholar

21. Lee C.M., Mok Y.K., Sohn D.S. : High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding. J. Nucl. Mater. 496 (2017) 343–352.10.1016/j.jnucmat.2017.10.013Search in Google Scholar

22. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Gusev A.Yu., Malgin A.G., Abramov N.N., Zharotsheva K.S., Khatkevich V.M., Koteneva M.V., Li E.V., The mechanism and kinetics of the fuel cladding failure during loading after high-temperature oxidation. J. Nucl. Mater. 452 (2014) 102–109.10.1016/j.jnucmat.2014.05.006Search in Google Scholar

23. Ni N., Lozano-Perez S., Sykes J.M., Smith G.D.W., Grovenor C.R.M., Focussed ion beam sectioning for the 3D characterisation of cracking in oxide scales formed on commercial ZIRLO alloys during corrosion in high temperature pressurised water. Corr. Sci. 53 (2011) 4073–4083.10.1016/j.corsci.2011.08.013Search in Google Scholar

24. Ni N., Lozano-Perez S., Sykes J., Grovenor C. : Multi-scale characterisation of oxide on zirconium alloys. Mater. High. Temp. 29 (2014) 166–170.10.3184/096034012X13334555476487Search in Google Scholar

25. Steinbrück M., Vér N., Große M., Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600–1200 °C. Oxid. Met. 76 (2011) 215–232.10.1007/s11085-011-9249-3Search in Google Scholar

26. Favergeon J., Montesin T., Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys. Met. Oxid. 64 (2005) 252–279.10.1007/s11085-005-6563-7Search in Google Scholar

27. Duriez C., Dupont T., Schmet B., Enoch F., Zircaloy-4 and M5® high temperature oxidation and nitriding in air. J. Nucl. Mater. 380 (2008) 30–45.10.1016/j.jnucmat.2008.07.002Search in Google Scholar

28. Zeng C., Ling Y., Bai Y., Zhang R., Dai X., Chen Y., Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl. J. Hydrogen Energy 41 (2016) 7676–7690.10.1016/j.ijhydene.2016.01.174Search in Google Scholar

29. Zieliński A., Cymann A., Gumiński A., Hernik A., Gajowiec G., Influence of high temperature oxidation hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Proc. 38 (2019) 8–15.10.1515/htmp-2017-0074Search in Google Scholar

30. Yoo H.-I., Koo B.-J., Hong J.-O., Hwang I.-S., Yeong I.-H., A working hypothesis on oxidation kinetics of Zircaloy. J. Nucl. Mater. 299 (2001) 235–241.10.1016/S0022-3115(01)00695-XSearch in Google Scholar

31. Lee K. W., Hong S.I., Zirconium hydrides and their effect on the circumferential mechanical properties of Zr–Sn–Fe–Nb tubes. J. Alloys Cmpds 346 (2002) 302–307.10.1016/S0925-8388(02)00527-3Search in Google Scholar

32. Kurpaska L., Jozwik I., Jagielski J., Study of sub-oxide phases at the metal-oxide interface in oxidized pure zirconium and Zr-1.0% Nb alloy by using SEM/FIB/EBSD and EDS techniques. J. Nucl. Mater. 299 (2001) 235–241.Search in Google Scholar

33. De Gabory B., Motta A.T., Wang K., Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO oxide layers. J. Nucl. Mater. 456 (2015) 272–280.10.1016/j.jnucmat.2014.09.073Search in Google Scholar

34. Tejland P., Andrén H.-A., Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430 (2012) 64–71.10.1016/j.jnucmat.2012.06.039Search in Google Scholar

35. Guerain M., Duriez C., Grosseau-Poussard J.L., Mermoux M., Review of stress fields in zirconium alloys corrosion scales. Corr. Sci. 95 (2015) 11–21.10.1016/j.corsci.2015.03.004Search in Google Scholar

36. Baris S., Abolhassani Y.L., Chiu L., Evans H.E., (2018) Observation of crack microstructure in oxides and its correlation to oxidation and hydrogen-uptake by 3D FIB Tomography – case of Zr-ZrO2 in reactor. Mater. High Temp. 35 (2018) 14–21.10.1080/09603409.2017.1392412Search in Google Scholar

37. Birchley J., Fernandez-Moguel L. : Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann. Nucl. Energy. 40 (2012) 163–170.10.1016/j.anucene.2011.10.019Search in Google Scholar

38. Rudling P., Wikmark G.A., A unified model of Zircaloy BWR corrosion and hydriding mechanisms. J. Nucl. Mater. 265 (1999) 44–59.10.1016/S0022-3115(98)00613-8Search in Google Scholar

39. Yilmazbayhan A., Breval E., Motta A.T., Comstock R.J., Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349 (2006) 265–281.10.1016/j.jnucmat.2005.10.012Search in Google Scholar

40. Steinbrück M., Birchley J., Boldyrev A.V., Goryachev A.V., Grosse M., Haste T.J., Hózer Z., Kisselev A.E., Nalivaev V.I., Semishkin V.P., Sepold L., Stuckert J., Vér N., Veshchunov M.S., High temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr. Nucl. Energy 52 (2010) 19–36.10.1016/j.pnucene.2009.07.012Search in Google Scholar

41. Kawashima N.K.S.H., Mechanism of zircaloy nodular corrosion J. Nucl. Mater. 119 (1983) 229–239.10.1016/0022-3115(83)90199-XSearch in Google Scholar

42. Likhanskii V.V., Evdokimov L.A., Effect of additives on the susceptibility of zirconium alloys to nodular corrosion. J. Nucl. Mater. 392 (2009) 447–452.10.1016/j.jnucmat.2009.04.003Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials