1. bookVolume 12 (2019): Issue 1 (April 2019)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Electrical conductivity of low-temperature sodium-potassium cryolite melts

Published Online: 09 Jul 2019
Volume & Issue: Volume 12 (2019) - Issue 1 (April 2019)
Page range: 22 - 26
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Electrical conductivity of NaF-KF-AlF3 melts with different ratios of sodium fluoride and potassium fluoride was measured using a pyrolytic boron nitride tube-type cell with constant distance of electrodes. Molar cryolite ratios MR = (n(NaF) + n(KF))/n(AlF3) varied from 1.5 to 1.2 (with a step 0.1) in the temperature range of (675—900) °C. AC-techniques with a sine wave signal with small amplitude in the high frequency range were applied. Electrolyte resistance was obtained from nonlinear regression analysis according to equivalent circuit. Concentration and temperature dependency of electrical conductivity was described and defined. Experimental data were compared with literary sources and regression equations.

Keywords

Apisarov A, Dedyukhin A, Redkin A, Tkacheva O, Zaikov Y (2010) Russ. J. Electrochem. 46: 633—639.Search in Google Scholar

Apisarov A, Dedyukhin A, Nikolaeva E, Tinghaev P, Tkacheva O, Redkin A, Zaikov Y (2011) Metall. Mater. Trans. B 42: 236—242.Search in Google Scholar

Cassayre L, Palau P, Chamelot P, Massot L (2010) J. Chem. Eng. Data 55: 4549—4560.10.1021/je100214xSearch in Google Scholar

Danielik V (2005) Chem. Papers 59: 81—84.Search in Google Scholar

Dedyukhin A, Apisarov A, Tkacheva O, Redkin A, Zaikov Y, Frolov A, Gusev A (2009) ECS Trans 16: 317—324.10.1149/1.3159336Search in Google Scholar

Dedyukhin A, Apisarov A, Tinghaev P, Redkin A, Zaikov Y (2011) Light Metals 563—565.10.1007/978-3-319-48160-9_99Search in Google Scholar

Fellner P, Chrenková M, Gabčová J, Matiašovský K (1990) Chem. Papers 44: 677—684.Search in Google Scholar

Galasiu I, Galasiu R, Thonstad J (2007) Inert Anodes for Aluminium Electrolysis, Düsseldorf.Search in Google Scholar

Híveš J, Thonstad J (2004) Electrochim. Acta 49: 5111—5114.Search in Google Scholar

Huang Y, Lai Y, Tian Z, Li J, Liu Y, Li Q (2008) J. Cent. South. Univ. T. 15: 819—823.Search in Google Scholar

Kubiňáková E, Danielik V, Híveš J (2018_1) J. Electrochem Soc. 165: E793—E797.10.1149/2.0971814jesSearch in Google Scholar

Kubiňáková E, Danielik V, Híveš J (2018_2) Electrochim. Acta 265: 474—479.10.1016/j.electacta.2018.01.174Search in Google Scholar

Kubiňáková E, Danielik V, Híveš J (2018_3) J. Electrochem Soc. 165: E274—E278.10.1149/2.1041807jesSearch in Google Scholar

Kubiňáková E, Híveš J, Danielik V (2016) Acta Chimica Slovaca 9: 141—145.10.1515/acs-2016-0024Search in Google Scholar

Kvande H, Drabløs PA (2014) J. Occup. Environ. Med 56: 23—32.Search in Google Scholar

Phillips B, Warshaw C, Mockrin I (1966) J. Am. Ceram. Soc. 49: 631—634.Search in Google Scholar

Solheim A, Sterten Å (1996) In: Thonstad J (Ed) Ninth International Symposium on Light Metals Production (pp 225—234). Thondheim.Search in Google Scholar

Thonstad J, Fellner P, Haarberg GM, Híveš J, Kvande H, Sterten Å (2001) Aluminium Electrolysis, Fundamentals of the Hall-Héroul Process. Düsseldorf.Search in Google Scholar

Yang J, Li W, Yan H, Liu D (2013) Light Metals 689—693.10.1002/9781118663189.ch118Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo